Guoshuai Ban , Jiaming Song , Zhuo Wang , Xin Zhao , Yuting Li , Juanjuan Yang , Chengzheng Ye , Feng Teng , Peng Hu , Haibo Fan
{"title":"Visible-near-infrared self-powered photodetector based on FePSe3","authors":"Guoshuai Ban , Jiaming Song , Zhuo Wang , Xin Zhao , Yuting Li , Juanjuan Yang , Chengzheng Ye , Feng Teng , Peng Hu , Haibo Fan","doi":"10.1016/j.surfin.2024.105319","DOIUrl":null,"url":null,"abstract":"<div><div>As a type of layered van der Waals material, transition metal phosphorus trichalcogenide FePSe<sub>3</sub>’s high carrier mobility and light absorption capability offering this p-type semiconductor promising utilization in broadband optoelectronics detection. Despite of the specific photoelectric response behavior of the FePSe<sub>3</sub>-based solid-state photodetectors, the self-powering potential of the FePSe<sub>3</sub>-based devices still remains unexplored. In this study, we harnessed the architecture of the photoelectrochemical photodetector and fabricated a FePSe<sub>3</sub>-based device to investigate its photoelectric performance under different illumination and bias conditions. It was found that the device demonstrated a visible-near-infrared self-powering detection capability ranging from 400 to 800 nm, fast response speed, high sensitivity and outstanding cyclic stability. This research signifies the promising potential of FePSe<sub>3</sub> in the field of self-powered optoelectronics.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024014755","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As a type of layered van der Waals material, transition metal phosphorus trichalcogenide FePSe3’s high carrier mobility and light absorption capability offering this p-type semiconductor promising utilization in broadband optoelectronics detection. Despite of the specific photoelectric response behavior of the FePSe3-based solid-state photodetectors, the self-powering potential of the FePSe3-based devices still remains unexplored. In this study, we harnessed the architecture of the photoelectrochemical photodetector and fabricated a FePSe3-based device to investigate its photoelectric performance under different illumination and bias conditions. It was found that the device demonstrated a visible-near-infrared self-powering detection capability ranging from 400 to 800 nm, fast response speed, high sensitivity and outstanding cyclic stability. This research signifies the promising potential of FePSe3 in the field of self-powered optoelectronics.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.