V. Quadri , P. Tamain , Y. Marandet , H. Bufferand , N. Rivals , G. Ciraolo , G.L. Falchetto , R. Düll , S. Sureshkumar , N. Varadarajan , H. Yang , H. Reimerdes , D.S. Oliveira , D. Mancini
{"title":"Edge plasma turbulence simulations in detached regimes with the SOLEDGE3X code","authors":"V. Quadri , P. Tamain , Y. Marandet , H. Bufferand , N. Rivals , G. Ciraolo , G.L. Falchetto , R. Düll , S. Sureshkumar , N. Varadarajan , H. Yang , H. Reimerdes , D.S. Oliveira , D. Mancini","doi":"10.1016/j.nme.2024.101756","DOIUrl":null,"url":null,"abstract":"<div><div>Experimental results from several tokamaks suggest a strong impact of divertor density regimes on turbulent transport in the edge plasma. Reciprocally, the change in cross- field transport and Scrape-Off-Layer (SOL) width affects the access to density regimes, making it a fundamental topic for heat exhaust issue. Addressing this issue self- consistently requires numerical modeling tools including, both, turbulent transport and neutrals recycling physics. In this study, the SOLEDGE3X multi-fluid edge plasma code is used to conduct a first analysis of turbulent transport in a long-leg diverted plasma in high density regimes. A fluid neutrals model is used to model particle recycling as well as fueling by gas puff. A dedicated pulse run in the TCV tokamak is modeled in which a density scan from attached to detached plasma conditions was performed. The following results demonstrate the achievement of a turbulence simulation in the detached regime, explicitly highlighting a change in turbulence properties between low and high density, which are responsible of a change in the SOL widths.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"41 ","pages":"Article 101756"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124001790","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental results from several tokamaks suggest a strong impact of divertor density regimes on turbulent transport in the edge plasma. Reciprocally, the change in cross- field transport and Scrape-Off-Layer (SOL) width affects the access to density regimes, making it a fundamental topic for heat exhaust issue. Addressing this issue self- consistently requires numerical modeling tools including, both, turbulent transport and neutrals recycling physics. In this study, the SOLEDGE3X multi-fluid edge plasma code is used to conduct a first analysis of turbulent transport in a long-leg diverted plasma in high density regimes. A fluid neutrals model is used to model particle recycling as well as fueling by gas puff. A dedicated pulse run in the TCV tokamak is modeled in which a density scan from attached to detached plasma conditions was performed. The following results demonstrate the achievement of a turbulence simulation in the detached regime, explicitly highlighting a change in turbulence properties between low and high density, which are responsible of a change in the SOL widths.
期刊介绍:
The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.