Deep Learning Model for Predicting Neurodevelopmental Outcome in Very Preterm Infants Using Cerebral Ultrasound

Tahani M. Ahmad MD, ABR , Alessandro Guida PhD , Sam Stewart PhD , Noah Barrett MSc , Michael J. Vincer MD , Jehier K. Afifi MD, MSc
{"title":"Deep Learning Model for Predicting Neurodevelopmental Outcome in Very Preterm Infants Using Cerebral Ultrasound","authors":"Tahani M. Ahmad MD, ABR ,&nbsp;Alessandro Guida PhD ,&nbsp;Sam Stewart PhD ,&nbsp;Noah Barrett MSc ,&nbsp;Michael J. Vincer MD ,&nbsp;Jehier K. Afifi MD, MSc","doi":"10.1016/j.mcpdig.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To develop deep learning (DL) models applied to neonatal cranial ultrasound (CUS) and clinical variables to predict neurodevelopmental impairment (NDI) in very preterm infants (VPIs) at 3 years of corrected age.</div></div><div><h3>Patients and Methods</h3><div>This is a retrospective study of a cohort of VPI (22<sup>0</sup>-30<sup>6</sup> weeks’ gestation) born between 2004 and 2016 in Nova Scotia, Canada. Clinical data at hospital discharge and CUS images at 3 time points were used to develop DL models using elastic net (EN) and convolutional neural network (CNN). The models’ performances were compared using precision recall area under the curve (PR-AUC) and area under the receiver operation characteristic curve (ROC-AUC) with their 95% ci.</div></div><div><h3>Results</h3><div>Of 665 eligible VPIs, 619 (93%) infants with 4184 CUS images were included. The CNN model combining CUS and clinical variables reported better performance (PR-AUC, 0.75; 95% CI, 072-0.79; ROC-AUC, 0.71; 95% CI, 0.67-0.74) in the prediction of positive NDI outcome compared with the traditional models based solely on clinical predictors (PR-AUC, 0.60; 95% CI, 0.52-0.68; ROC-AUC, 0.72; 95% CI, 0.68-0.75). When analyzed by the CUS plane and acquisition time point, the model using the anterior coronal plane at 6 weeks of age provided the highest predictive accuracy (PR-AUC, 0.81; 95% CI, 0.77-0.91; ROC-AUC, 0.78; 95% CI, 0.66-0.87).</div></div><div><h3>Conclusion</h3><div>We developed and internally validated a DL prognostic model using CUS and clinical predictors to predict NDI in VPIs at 3 years of age. Early and accurate identification of infants at risk for NDI enables referral to targeted interventions, which improves functional outcomes.</div></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 4","pages":"Pages 596-605"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224001007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To develop deep learning (DL) models applied to neonatal cranial ultrasound (CUS) and clinical variables to predict neurodevelopmental impairment (NDI) in very preterm infants (VPIs) at 3 years of corrected age.

Patients and Methods

This is a retrospective study of a cohort of VPI (220-306 weeks’ gestation) born between 2004 and 2016 in Nova Scotia, Canada. Clinical data at hospital discharge and CUS images at 3 time points were used to develop DL models using elastic net (EN) and convolutional neural network (CNN). The models’ performances were compared using precision recall area under the curve (PR-AUC) and area under the receiver operation characteristic curve (ROC-AUC) with their 95% ci.

Results

Of 665 eligible VPIs, 619 (93%) infants with 4184 CUS images were included. The CNN model combining CUS and clinical variables reported better performance (PR-AUC, 0.75; 95% CI, 072-0.79; ROC-AUC, 0.71; 95% CI, 0.67-0.74) in the prediction of positive NDI outcome compared with the traditional models based solely on clinical predictors (PR-AUC, 0.60; 95% CI, 0.52-0.68; ROC-AUC, 0.72; 95% CI, 0.68-0.75). When analyzed by the CUS plane and acquisition time point, the model using the anterior coronal plane at 6 weeks of age provided the highest predictive accuracy (PR-AUC, 0.81; 95% CI, 0.77-0.91; ROC-AUC, 0.78; 95% CI, 0.66-0.87).

Conclusion

We developed and internally validated a DL prognostic model using CUS and clinical predictors to predict NDI in VPIs at 3 years of age. Early and accurate identification of infants at risk for NDI enables referral to targeted interventions, which improves functional outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用脑超声波预测极早产儿神经发育结果的深度学习模型
目的开发应用于新生儿头颅超声(CUS)和临床变量的深度学习(DL)模型,以预测极早产儿(VPI)在 3 岁矫正年龄时的神经发育障碍(NDI)。患者和方法这是一项回顾性研究,研究对象是 2004 年至 2016 年期间在加拿大新斯科舍省出生的一组 VPI(妊娠 220-306 周)。出院时的临床数据和 3 个时间点的 CUS 图像被用于使用弹性网(EN)和卷积神经网络(CNN)开发 DL 模型。使用精确召回曲线下面积(PR-AUC)和接收者操作特征曲线下面积(ROC-AUC)及其 95% ci 比较了模型的性能。与仅基于临床预测因子的传统模型(PR-AUC,0.60;95% CI,0.52-0.68;ROC-AUC,0.72;95% CI,0.68-0.75)相比,结合 CUS 和临床变量的 CNN 模型在预测 NDI 阳性结果方面表现更好(PR-AUC,0.75;95% CI,072-0.79;ROC-AUC,0.71;95% CI,0.67-0.74)。当按 CUS 平面和采集时间点进行分析时,6 周龄时使用前冠状面的模型具有最高的预测准确性(PR-AUC,0.81;95% CI,0.77-0.91;ROC-AUC,0.78;95% CI,0.66-0.87)。早期准确识别有 NDI 风险的婴儿可转诊接受有针对性的干预,从而改善功能预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mayo Clinic Proceedings. Digital health
Mayo Clinic Proceedings. Digital health Medicine and Dentistry (General), Health Informatics, Public Health and Health Policy
自引率
0.00%
发文量
0
审稿时长
47 days
期刊最新文献
Developing a Research Center for Artificial Intelligence in Medicine Strategic Considerations for Selecting Artificial Intelligence Solutions for Institutional Integration: A Single-Center Experience Reviewers for Mayo Clinic Proceedings: Digital Health (2024) A Blueprint for Clinical-Driven Medical Device Development: The Feverkidstool Application to Identify Children With Serious Bacterial Infection Cost-Effectiveness of Artificial Intelligence-Enabled Electrocardiograms for Early Detection of Low Ejection Fraction: A Secondary Analysis of the Electrocardiogram Artificial Intelligence-Guided Screening for Low Ejection Fraction Trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1