The mechanics and morphology evolutions in stretched ribbons under torsion: A 3D phase diagram

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2024-10-30 DOI:10.1016/j.ijmecsci.2024.109786
{"title":"The mechanics and morphology evolutions in stretched ribbons under torsion: A 3D phase diagram","authors":"","doi":"10.1016/j.ijmecsci.2024.109786","DOIUrl":null,"url":null,"abstract":"<div><div>Slender structures ubiquitously undergo complex shape transformations in both natural and artificial systems. Soft ribbons can exhibit rich morphologies when subjected to loading and geometric constraints. The competition between the macroscopic, microscopic, and transverse buckling modes results in multiple morphological transitions, revealing distinct evolution paths among helicoid, crease, cylinder, and scrolled yarn configurations. However, the roles of tension, twist, and geometry in determining the buckling modes of a stretched ribbon under torsion remain unclear. In this study, we comprehensively investigate the torsional instabilities of elastic ribbons through experiments, theory, and finite element simulations. A one-dimensional model is employed to describe the nonlinear torsional responses in the helicoid stage. We present a modeling approach to describe the crease configuration and derive a semi-analytical solution based on the finite element analysis. We find that the competition between the macroscopic and microscopic buckling modes is governed by the thickness-to-width ratio, which determines the relative magnitudes of the membrane and bending strain energy in the helicoid. Additionally, as the applied tension increases, the buckling mode shifts from the longitudinal to the transverse direction. A three-dimensional phase diagram, as a function of twist, tension, and thickness-to-width ratio, is constructed to identify the morphology transitions of elastic ribbons. This study has implications for understanding the morphological complexity and achieving precise control of slender structures.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324008270","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Slender structures ubiquitously undergo complex shape transformations in both natural and artificial systems. Soft ribbons can exhibit rich morphologies when subjected to loading and geometric constraints. The competition between the macroscopic, microscopic, and transverse buckling modes results in multiple morphological transitions, revealing distinct evolution paths among helicoid, crease, cylinder, and scrolled yarn configurations. However, the roles of tension, twist, and geometry in determining the buckling modes of a stretched ribbon under torsion remain unclear. In this study, we comprehensively investigate the torsional instabilities of elastic ribbons through experiments, theory, and finite element simulations. A one-dimensional model is employed to describe the nonlinear torsional responses in the helicoid stage. We present a modeling approach to describe the crease configuration and derive a semi-analytical solution based on the finite element analysis. We find that the competition between the macroscopic and microscopic buckling modes is governed by the thickness-to-width ratio, which determines the relative magnitudes of the membrane and bending strain energy in the helicoid. Additionally, as the applied tension increases, the buckling mode shifts from the longitudinal to the transverse direction. A three-dimensional phase diagram, as a function of twist, tension, and thickness-to-width ratio, is constructed to identify the morphology transitions of elastic ribbons. This study has implications for understanding the morphological complexity and achieving precise control of slender structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扭转下拉伸带的力学和形态演变:三维相图
在自然和人工系统中,纤细结构都会发生复杂的形状变化。软带在受到载荷和几何约束时会表现出丰富的形态。宏观、微观和横向屈曲模式之间的竞争导致了多种形态转变,揭示了螺旋形、皱褶、圆筒形和卷曲纱线构型之间不同的演化路径。然而,张力、捻度和几何形状在决定扭转下拉伸带屈曲模式中的作用仍不清楚。在本研究中,我们通过实验、理论和有限元模拟全面研究了弹性带的扭转不稳定性。我们采用一维模型来描述螺旋阶段的非线性扭转响应。我们提出了描述折痕配置的建模方法,并在有限元分析的基础上得出了半解析解。我们发现,宏观屈曲模式和微观屈曲模式之间的竞争受厚度与宽度比的制约,而厚度与宽度比决定了螺旋体中膜应变能和弯曲应变能的相对大小。此外,随着外加张力的增加,屈曲模式会从纵向转向横向。通过构建与扭转、拉力和厚宽比相关的三维相图,可以确定弹性带的形态转变。这项研究对于理解形态的复杂性和实现对细长结构的精确控制具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
The mechanics and morphology evolutions in stretched ribbons under torsion: A 3D phase diagram Effect of surface integrity on quality factor of hemispherical resonator Trapping micro-swimmers over a cavity in an inertial micro-channel Experimental study on the impact resistance of fill-enhanced mechanical metamaterials Ellipsograph-derived vibration isolator with stiffness mode switching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1