A diversity and reliability-enhanced synthetic minority oversampling technique for multi-label learning

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2024-10-24 DOI:10.1016/j.ins.2024.121579
Yanlu Gong , Quanwang Wu , Mengchu Zhou , Chao Chen
{"title":"A diversity and reliability-enhanced synthetic minority oversampling technique for multi-label learning","authors":"Yanlu Gong ,&nbsp;Quanwang Wu ,&nbsp;Mengchu Zhou ,&nbsp;Chao Chen","doi":"10.1016/j.ins.2024.121579","DOIUrl":null,"url":null,"abstract":"<div><div>The class imbalance issue is generally intrinsic in multi-label datasets due to the fact that they have a large number of labels and each sample is associated with only a few of them. This causes the trained multi-label classifier to be biased towards the majority labels. Multi-label oversampling methods have been proposed to handle this issue, and they fall into clone-based and Synthetic Minority Oversampling TEchnique-based (SMOTE-based) ones. However, the former duplicates minority samples and may result in over-fitting whereas the latter may generate unreliable synthetic samples. In this work, we propose a Diversity and Reliability-enhanced SMOTE for multi-label learning (DR-SMOTE). In it, the minority classes are determined according to their label imbalance ratios. A reliable minority sample is used as a seed to generate a synthetic one while a reference sample is selected for it to confine the synthesis region. Features of the synthetic samples are determined probabilistically in this region and their labels are set identically to those of the seeds. We carry out experiments with eleven multi-label datasets to compare DR-SMOTE against seven existing resampling methods based on four base multi-label classifiers. The experimental results demonstrate DR-SMOTE’s superiority over its peers in terms of several evaluation metrics.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"690 ","pages":"Article 121579"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524014932","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The class imbalance issue is generally intrinsic in multi-label datasets due to the fact that they have a large number of labels and each sample is associated with only a few of them. This causes the trained multi-label classifier to be biased towards the majority labels. Multi-label oversampling methods have been proposed to handle this issue, and they fall into clone-based and Synthetic Minority Oversampling TEchnique-based (SMOTE-based) ones. However, the former duplicates minority samples and may result in over-fitting whereas the latter may generate unreliable synthetic samples. In this work, we propose a Diversity and Reliability-enhanced SMOTE for multi-label learning (DR-SMOTE). In it, the minority classes are determined according to their label imbalance ratios. A reliable minority sample is used as a seed to generate a synthetic one while a reference sample is selected for it to confine the synthesis region. Features of the synthetic samples are determined probabilistically in this region and their labels are set identically to those of the seeds. We carry out experiments with eleven multi-label datasets to compare DR-SMOTE against seven existing resampling methods based on four base multi-label classifiers. The experimental results demonstrate DR-SMOTE’s superiority over its peers in terms of several evaluation metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于多标签学习的多样性和可靠性增强型合成少数群体超采样技术
多标签数据集一般都存在类不平衡问题,这是因为这些数据集有大量标签,而每个样本只与其中的几个标签相关联。这会导致训练好的多标签分类器偏向于大多数标签。为了解决这个问题,有人提出了多标签超采样方法,它们分为基于克隆的方法和基于合成少数群体超采样技术(SMOTE)的方法。然而,前者会重复少数群体样本并可能导致过度拟合,而后者则可能生成不可靠的合成样本。在这项工作中,我们提出了一种用于多标签学习的多样性和可靠性增强型 SMOTE(DR-SMOTE)。其中,少数类是根据其标签不平衡比率确定的。可靠的少数群体样本被用作生成合成样本的种子,同时为其选择参考样本以限定合成区域。合成样本的特征在该区域内以概率方式确定,其标签设置与种子相同。我们使用 11 个多标签数据集进行了实验,将 DR-SMOTE 与基于 4 个基本多标签分类器的 7 种现有重采样方法进行了比较。实验结果表明,DR-SMOTE 在多个评估指标上都优于同类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Editorial Board Community structure testing by counting frequent common neighbor sets Finite-time secure synchronization for stochastic complex networks with delayed coupling under deception attacks: A two-step switching control scheme Adaptive granular data compression and interval granulation for efficient classification Introducing fairness in network visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1