Crack path analysis of spent nuclear fuel cladding using the strain energy-based Dijkstra algorithm

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-10-30 DOI:10.1016/j.nucengdes.2024.113661
Jee A Baik, Jung Jin Kim
{"title":"Crack path analysis of spent nuclear fuel cladding using the strain energy-based Dijkstra algorithm","authors":"Jee A Baik,&nbsp;Jung Jin Kim","doi":"10.1016/j.nucengdes.2024.113661","DOIUrl":null,"url":null,"abstract":"<div><div>The integrity of spent fuel cladding is crucial for preventing the release of radioactive materials, which pose significant risks to public safety and the environment. However, accurately predicting cracks in cladding tubes remains a challenge. This study proposes a novel method for predicting crack paths in spent nuclear fuel cladding tubes using the Dijkstra algorithm, based on strain energy. In this method, cladding images are segmented into cladding and hydride pixels, followed by a finite element analysis to calculate the strain energy. The Dijkstra algorithm utilizes this strain energy data from hydrides to predict crack paths in areas with low resistance to loading. The predicted path exhibited an accuracy of 92.78 % with respect to the initiation point of the actual crack path and was located within 200 μm of the actual crack path. The proposed method demonstrates a higher similarity to the actual crack path than conventional image-based methods. These results suggest that the safety assessment of spent nuclear fuel can be enhanced, enabling the development of effective management strategies for spent nuclear fuel.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007611","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integrity of spent fuel cladding is crucial for preventing the release of radioactive materials, which pose significant risks to public safety and the environment. However, accurately predicting cracks in cladding tubes remains a challenge. This study proposes a novel method for predicting crack paths in spent nuclear fuel cladding tubes using the Dijkstra algorithm, based on strain energy. In this method, cladding images are segmented into cladding and hydride pixels, followed by a finite element analysis to calculate the strain energy. The Dijkstra algorithm utilizes this strain energy data from hydrides to predict crack paths in areas with low resistance to loading. The predicted path exhibited an accuracy of 92.78 % with respect to the initiation point of the actual crack path and was located within 200 μm of the actual crack path. The proposed method demonstrates a higher similarity to the actual crack path than conventional image-based methods. These results suggest that the safety assessment of spent nuclear fuel can be enhanced, enabling the development of effective management strategies for spent nuclear fuel.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于应变能的 Dijkstra 算法分析乏核燃料包壳的裂纹路径
乏燃料包壳的完整性对于防止放射性物质泄漏至关重要,而放射性物质泄漏会给公共安全和环境带来重大风险。然而,准确预测包壳管中的裂纹仍然是一项挑战。本研究提出了一种基于应变能、使用 Dijkstra 算法预测乏核燃料包壳管裂纹路径的新方法。在这种方法中,包壳图像被分割为包壳和氢化物像素,然后进行有限元分析以计算应变能。Dijkstra 算法利用来自氢化物的应变能数据来预测负载阻力较低区域的裂纹路径。与实际裂纹路径的起始点相比,预测路径的准确率为 92.78%,并且位于实际裂纹路径的 200 μm 范围内。与传统的基于图像的方法相比,所提出的方法与实际裂纹路径的相似度更高。这些结果表明,可以加强乏核燃料的安全评估,从而制定有效的乏核燃料管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1