{"title":"Ni/Al2O3 promoted by CeO2, CeO2-La2O3, and CeO2-ZrO2 supported on cordierite monoliths for methane steam reforming","authors":"","doi":"10.1016/j.cattod.2024.115107","DOIUrl":null,"url":null,"abstract":"<div><div>Promotion of Ni-based catalysts supported on cordierite monoliths was investigated for methane steam reforming. First, cordierite was coated by ɣ-Al<sub>2</sub>O<sub>3,</sub> and then the catalyst components were deposited by successive wet impregnation, obtaining: NiAl/cordierite; NiCeAl/cordierite; NiCeLaAl/cordierite and NiCeZrAl/cordierite. The monolithic catalysts were characterized by adherence test, Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDX), N<sub>2</sub> physisorption, Temperature-Programmed Reduction (TPR), CO chemisorption, as well as by <em>in situ</em> and <em>operando</em> Raman spectroscopy. The catalyst layer showed very good adherence and distribution of the components over the cordierite surface. The catalysts presented high activity between 600 and 800 °C at a H<sub>2</sub>O/CH<sub>4</sub> molar ratio=1.5, except for NiCeAl/cordierite, which obtained lower methane conversion, associated with its lower nickel dispersion. The catalysts showed high stability under extreme conditions for carbon deposition (600 °C and H<sub>2</sub>O/CH<sub>4</sub>=1), over 90 h on stream. Raman spectroscopy revealed the presence of oxygen vacancies, which may be increased during ceria reduction, highlighting the potential of these catalysts to enhance the resistance to deactivation by carbon deposition in long-term tests.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124006011","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Promotion of Ni-based catalysts supported on cordierite monoliths was investigated for methane steam reforming. First, cordierite was coated by ɣ-Al2O3, and then the catalyst components were deposited by successive wet impregnation, obtaining: NiAl/cordierite; NiCeAl/cordierite; NiCeLaAl/cordierite and NiCeZrAl/cordierite. The monolithic catalysts were characterized by adherence test, Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDX), N2 physisorption, Temperature-Programmed Reduction (TPR), CO chemisorption, as well as by in situ and operando Raman spectroscopy. The catalyst layer showed very good adherence and distribution of the components over the cordierite surface. The catalysts presented high activity between 600 and 800 °C at a H2O/CH4 molar ratio=1.5, except for NiCeAl/cordierite, which obtained lower methane conversion, associated with its lower nickel dispersion. The catalysts showed high stability under extreme conditions for carbon deposition (600 °C and H2O/CH4=1), over 90 h on stream. Raman spectroscopy revealed the presence of oxygen vacancies, which may be increased during ceria reduction, highlighting the potential of these catalysts to enhance the resistance to deactivation by carbon deposition in long-term tests.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.