Image compressive sensing reconstruction via nonlocal low-rank residual-based ADMM framework

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computer Vision and Image Understanding Pub Date : 2024-10-28 DOI:10.1016/j.cviu.2024.104204
Junhao Zhang , Kim-Hui Yap , Lap-Pui Chau , Ce Zhu
{"title":"Image compressive sensing reconstruction via nonlocal low-rank residual-based ADMM framework","authors":"Junhao Zhang ,&nbsp;Kim-Hui Yap ,&nbsp;Lap-Pui Chau ,&nbsp;Ce Zhu","doi":"10.1016/j.cviu.2024.104204","DOIUrl":null,"url":null,"abstract":"<div><div>The nonlocal low-rank (LR) modeling has proven to be an effective approach in image compressive sensing (CS) reconstruction, which starts by clustering similar patches using the nonlocal self-similarity (NSS) prior into nonlocal image group and then imposes an LR penalty on each nonlocal image group. However, most existing methods only approximate the LR matrix directly from the degraded nonlocal image group, which may lead to suboptimal LR matrix approximation and thus obtain unsatisfactory reconstruction results. In this paper, we propose a novel nonlocal low-rank residual (NLRR) approach for image CS reconstruction, which progressively approximates the underlying LR matrix by minimizing the LR residual. To do this, we first use the NSS prior to obtaining a good estimate of the original nonlocal image group, and then the LR residual between the degraded nonlocal image group and the estimated nonlocal image group is minimized to derive a more accurate LR matrix. To ensure the optimization is both feasible and reliable, we employ an alternative direction multiplier method (ADMM) to solve the NLRR-based image CS reconstruction problem. Our experimental results show that the proposed NLRR algorithm achieves superior performance against many popular or state-of-the-art image CS reconstruction methods, both in objective metrics and subjective perceptual quality.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"249 ","pages":"Article 104204"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002856","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The nonlocal low-rank (LR) modeling has proven to be an effective approach in image compressive sensing (CS) reconstruction, which starts by clustering similar patches using the nonlocal self-similarity (NSS) prior into nonlocal image group and then imposes an LR penalty on each nonlocal image group. However, most existing methods only approximate the LR matrix directly from the degraded nonlocal image group, which may lead to suboptimal LR matrix approximation and thus obtain unsatisfactory reconstruction results. In this paper, we propose a novel nonlocal low-rank residual (NLRR) approach for image CS reconstruction, which progressively approximates the underlying LR matrix by minimizing the LR residual. To do this, we first use the NSS prior to obtaining a good estimate of the original nonlocal image group, and then the LR residual between the degraded nonlocal image group and the estimated nonlocal image group is minimized to derive a more accurate LR matrix. To ensure the optimization is both feasible and reliable, we employ an alternative direction multiplier method (ADMM) to solve the NLRR-based image CS reconstruction problem. Our experimental results show that the proposed NLRR algorithm achieves superior performance against many popular or state-of-the-art image CS reconstruction methods, both in objective metrics and subjective perceptual quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于非局部低阶残差的 ADMM 框架进行图像压缩传感重建
非局部低阶(LR)建模已被证明是图像压缩传感(CS)重建中的一种有效方法,它首先利用非局部自相似性(NSS)先验将相似斑块聚类为非局部图像组,然后对每个非局部图像组施加 LR 惩罚。然而,大多数现有方法只是直接从退化的非局部图像组近似 LR 矩阵,这可能会导致 LR 矩阵近似效果不理想,从而得到不尽人意的重建结果。在本文中,我们提出了一种用于图像 CS 重建的新型非局部低阶残差(NLRR)方法,该方法通过最小化 LR 残差逐步逼近底层 LR 矩阵。为此,我们首先使用 NSS 先验法获得原始非本地图像组的良好估计值,然后最小化退化的非本地图像组和估计的非本地图像组之间的 LR 残差,从而得出更精确的 LR 矩阵。为确保优化的可行性和可靠性,我们采用了另一种方向乘法(ADMM)来解决基于 NLRR 的图像 CS 重建问题。我们的实验结果表明,与许多流行的或最先进的图像 CS 重建方法相比,所提出的 NLRR 算法在客观指标和主观感知质量方面都取得了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
期刊最新文献
Scene-cGAN: A GAN for underwater restoration and scene depth estimation 2S-SGCN: A two-stage stratified graph convolutional network model for facial landmark detection on 3D data Dual stage semantic information based generative adversarial network for image super-resolution Enhancing scene text detectors with realistic text image synthesis using diffusion models Unsupervised co-generation of foreground–background segmentation from Text-to-Image synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1