A study on the fretting corrosion of 316L in static lead-bismuth eutectic (LBE): The role of slip amplitude and normal force on damage mechanism at 350 °C

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nuclear Materials Pub Date : 2024-10-18 DOI:10.1016/j.jnucmat.2024.155466
Hui Chen , Wenjie Pei , Shengzan Zhang , Wei Tan , Guorui Zhu
{"title":"A study on the fretting corrosion of 316L in static lead-bismuth eutectic (LBE): The role of slip amplitude and normal force on damage mechanism at 350 °C","authors":"Hui Chen ,&nbsp;Wenjie Pei ,&nbsp;Shengzan Zhang ,&nbsp;Wei Tan ,&nbsp;Guorui Zhu","doi":"10.1016/j.jnucmat.2024.155466","DOIUrl":null,"url":null,"abstract":"<div><div>Fretting corrosion of stainless steel in the LBE affects the safety of lead-cooled fast reactors. Slip amplitude and normal load are the main mechanical factors affecting fretting wear behavior. Thus, the damage mechanism of 316L stainless steel at 350 °C LBE influenced by slip amplitude and normal load was investigated by jointly utilizing multiple characterization methods. The results indicate that the normal load and slip amplitude essentially affect the tangential stress and relative sliding value in the contact area, leading to different slip regions and damage mechanisms. In the mixed slip region, the damage mechanism is adhesion and delamination cracks. The increase in tangential stress leads to decrease in relative sliding. The thick wear debris layer attached to the worn surface can protect the substrate from being attacked by the LBE. In the gross slip region, the damage mechanism is abrasive wear and dissolution corrosion. The increase in relative sliding causes more damage and Ni dissolution, leading to the transformation from austenite to ferrite and internal strain, making the substrate more susceptible to damage and increasing the risk of liquid metal embrittlement (LME) of austenitic stainless steel at 350 °C. Accordingly, a model for different damage mechanisms was proposed. These results can provide important information on the fretting damage related to the LBE environment.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155466"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002231152400566X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fretting corrosion of stainless steel in the LBE affects the safety of lead-cooled fast reactors. Slip amplitude and normal load are the main mechanical factors affecting fretting wear behavior. Thus, the damage mechanism of 316L stainless steel at 350 °C LBE influenced by slip amplitude and normal load was investigated by jointly utilizing multiple characterization methods. The results indicate that the normal load and slip amplitude essentially affect the tangential stress and relative sliding value in the contact area, leading to different slip regions and damage mechanisms. In the mixed slip region, the damage mechanism is adhesion and delamination cracks. The increase in tangential stress leads to decrease in relative sliding. The thick wear debris layer attached to the worn surface can protect the substrate from being attacked by the LBE. In the gross slip region, the damage mechanism is abrasive wear and dissolution corrosion. The increase in relative sliding causes more damage and Ni dissolution, leading to the transformation from austenite to ferrite and internal strain, making the substrate more susceptible to damage and increasing the risk of liquid metal embrittlement (LME) of austenitic stainless steel at 350 °C. Accordingly, a model for different damage mechanisms was proposed. These results can provide important information on the fretting damage related to the LBE environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静态铅铋共晶(LBE)中 316L 的摩擦腐蚀研究:350 °C 时滑移幅度和法向力对损坏机制的作用
铅冷快堆中不锈钢的烧蚀会影响铅冷快堆的安全。滑动幅度和法向载荷是影响烧蚀磨损行为的主要机械因素。因此,通过联合使用多种表征方法,研究了 316L 不锈钢在 350 °C 铅冷快堆中受滑动幅度和法向载荷影响的损伤机理。结果表明,法向载荷和滑移振幅主要影响接触区的切向应力和相对滑移值,从而导致不同的滑移区域和损伤机制。在混合滑移区域,损坏机制是粘着和分层裂纹。切向应力的增加导致相对滑动的减小。磨损表面附着的厚磨损碎屑层可以保护基体免受 LBE 的侵蚀。在粗滑动区域,破坏机制是磨料磨损和溶解腐蚀。相对滑动的增加会造成更多的损伤和镍的溶解,导致奥氏体向铁素体的转变和内部应变,使基体更容易受到损伤,增加了奥氏体不锈钢在 350 °C 下发生液态金属脆性(LME)的风险。因此,我们提出了不同损伤机制的模型。这些结果可为与 LBE 环境相关的烧蚀损伤提供重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
期刊最新文献
Editorial Board Additive manufactured ODS-FeCrAl steel achieves high corrosion resistance in lead-bismuth eutectic (LBE) Molecular dynamics simulations on the evolution of irradiation-induced dislocation loops in FeCoNiCrCu high-entropy alloy Effect of grain boundary engineering on corrosion behavior and mechanical properties of GH3535 alloy in LiCl-KCl molten salt Pressure-less joining SiCf/SiC tube and Kovar alloy with AgCuInTi filler: Interfacial reactions and mechanical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1