Chun Liu , Yunwu Tang , Chaoyi Ding , Wenhao Li , Weimin Wang
{"title":"Effects of carbon on the synthesis and densification of tantalum carbide powder","authors":"Chun Liu , Yunwu Tang , Chaoyi Ding , Wenhao Li , Weimin Wang","doi":"10.1016/j.jeurceramsoc.2024.117022","DOIUrl":null,"url":null,"abstract":"<div><div>Tantalum carbide (TaC) powder was synthesised at 1500 ºC by sol-gel and carbothermal reduction processes using tantalum pentachloride (TaCl<sub>5</sub>) and phenolic resin as the starting materials. The effects of the C/Ta ratios in the Ta-containing precursor on the reaction yield, microstructure, chemical composition, and sinterability of the powders were investigated. The results showed that a high C/Ta ratio was favourable for the formation of TaC powder. With an increase in the C/Ta ratio, the oxygen content of the powder decreased, whereas the free carbon content increased. Consolidated TaC ceramics with high relative density (> 97 %) were obtained at 1900 ºC for 5 min under 80 MPa after sintering the powder synthesised at C/Ta ratios of 4.00 and above. However, the hardness and fracture toughness of the TaC ceramics were slightly reduced when the C/Ta ratio exceeded 4.00, owing to weak interface bonding caused by excessive free carbon in the powder. It was found that sintering TaC powders prepared at a C/Ta ratio of 4.00 produced dense TaC ceramics, with a Vickers hardness and fracture toughness of 16.54 GPa and 3.72 GPa∙m<sup>1/2</sup>, respectively.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 117022"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924008951","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Tantalum carbide (TaC) powder was synthesised at 1500 ºC by sol-gel and carbothermal reduction processes using tantalum pentachloride (TaCl5) and phenolic resin as the starting materials. The effects of the C/Ta ratios in the Ta-containing precursor on the reaction yield, microstructure, chemical composition, and sinterability of the powders were investigated. The results showed that a high C/Ta ratio was favourable for the formation of TaC powder. With an increase in the C/Ta ratio, the oxygen content of the powder decreased, whereas the free carbon content increased. Consolidated TaC ceramics with high relative density (> 97 %) were obtained at 1900 ºC for 5 min under 80 MPa after sintering the powder synthesised at C/Ta ratios of 4.00 and above. However, the hardness and fracture toughness of the TaC ceramics were slightly reduced when the C/Ta ratio exceeded 4.00, owing to weak interface bonding caused by excessive free carbon in the powder. It was found that sintering TaC powders prepared at a C/Ta ratio of 4.00 produced dense TaC ceramics, with a Vickers hardness and fracture toughness of 16.54 GPa and 3.72 GPa∙m1/2, respectively.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.