Lu Zhan , Yunmei Du , Mengmeng Wang , Hongdong Li , Guangrui Xu , Guizhong Zhou , Jinling Zhao , Xiaodan Xia , Dehong Chen , Ruiyong Zhang , Lei Wang
{"title":"The interstitial Ru dopant induces abundant Ni(Fe)Ru cooperative sites to promote ampere-level current density for overall water splitting","authors":"Lu Zhan , Yunmei Du , Mengmeng Wang , Hongdong Li , Guangrui Xu , Guizhong Zhou , Jinling Zhao , Xiaodan Xia , Dehong Chen , Ruiyong Zhang , Lei Wang","doi":"10.1016/j.jcis.2024.10.140","DOIUrl":null,"url":null,"abstract":"<div><div>Directionally induced interstitial Ru dopant rather than ordinary substitutional doping is a challenge. Furthermore, DFT calculations revealed that compared with the substituted Ru dopants, the interstitial Ru dopants induce abundant Ni(Fe)<img>Ru cooperative sites, greatly expediting the reaction kinetics for HER and OER. Inspired by these, the interstitial Ru-doped NiFeP/NF electrode is constructed by the ’quenching doped Ru-phosphorization’ strategy. Relevant physical characterizations confirmed that interstitial Ru dopants promote electron reset in the Ni(Fe)<img>Ru synergistic sites, effectively avoiding metal atom dissolution and encouraging more Ni (Fe)<img>OOH active species. As expected, the Ru-NiFeP/NF||Ru-NiFeP/NF electrolyzer only need as low as 1.54 V to yield a current density of 1 A cm<sup>−2</sup>. In summary, this work innovatively constructs the phosphide electrode with ampere-level current density from the perspective of regulating the doping position of Ru. This provides a new design idea for optimizing the Ru doping strategy.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 ","pages":"Pages 769-779"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724024950","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Directionally induced interstitial Ru dopant rather than ordinary substitutional doping is a challenge. Furthermore, DFT calculations revealed that compared with the substituted Ru dopants, the interstitial Ru dopants induce abundant Ni(Fe)Ru cooperative sites, greatly expediting the reaction kinetics for HER and OER. Inspired by these, the interstitial Ru-doped NiFeP/NF electrode is constructed by the ’quenching doped Ru-phosphorization’ strategy. Relevant physical characterizations confirmed that interstitial Ru dopants promote electron reset in the Ni(Fe)Ru synergistic sites, effectively avoiding metal atom dissolution and encouraging more Ni (Fe)OOH active species. As expected, the Ru-NiFeP/NF||Ru-NiFeP/NF electrolyzer only need as low as 1.54 V to yield a current density of 1 A cm−2. In summary, this work innovatively constructs the phosphide electrode with ampere-level current density from the perspective of regulating the doping position of Ru. This provides a new design idea for optimizing the Ru doping strategy.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies