The interstitial Ru dopant induces abundant Ni(Fe)Ru cooperative sites to promote ampere-level current density for overall water splitting

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-10-28 DOI:10.1016/j.jcis.2024.10.140
Lu Zhan , Yunmei Du , Mengmeng Wang , Hongdong Li , Guangrui Xu , Guizhong Zhou , Jinling Zhao , Xiaodan Xia , Dehong Chen , Ruiyong Zhang , Lei Wang
{"title":"The interstitial Ru dopant induces abundant Ni(Fe)Ru cooperative sites to promote ampere-level current density for overall water splitting","authors":"Lu Zhan ,&nbsp;Yunmei Du ,&nbsp;Mengmeng Wang ,&nbsp;Hongdong Li ,&nbsp;Guangrui Xu ,&nbsp;Guizhong Zhou ,&nbsp;Jinling Zhao ,&nbsp;Xiaodan Xia ,&nbsp;Dehong Chen ,&nbsp;Ruiyong Zhang ,&nbsp;Lei Wang","doi":"10.1016/j.jcis.2024.10.140","DOIUrl":null,"url":null,"abstract":"<div><div>Directionally induced interstitial Ru dopant rather than ordinary substitutional doping is a challenge. Furthermore, DFT calculations revealed that compared with the substituted Ru dopants, the interstitial Ru dopants induce abundant Ni(Fe)<img>Ru cooperative sites, greatly expediting the reaction kinetics for HER and OER. Inspired by these, the interstitial Ru-doped NiFeP/NF electrode is constructed by the ’quenching doped Ru-phosphorization’ strategy. Relevant physical characterizations confirmed that interstitial Ru dopants promote electron reset in the Ni(Fe)<img>Ru synergistic sites, effectively avoiding metal atom dissolution and encouraging more Ni (Fe)<img>OOH active species. As expected, the Ru-NiFeP/NF||Ru-NiFeP/NF electrolyzer only need as low as 1.54 V to yield a current density of 1 A cm<sup>−2</sup>. In summary, this work innovatively constructs the phosphide electrode with ampere-level current density from the perspective of regulating the doping position of Ru. This provides a new design idea for optimizing the Ru doping strategy.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 ","pages":"Pages 769-779"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724024950","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Directionally induced interstitial Ru dopant rather than ordinary substitutional doping is a challenge. Furthermore, DFT calculations revealed that compared with the substituted Ru dopants, the interstitial Ru dopants induce abundant Ni(Fe)Ru cooperative sites, greatly expediting the reaction kinetics for HER and OER. Inspired by these, the interstitial Ru-doped NiFeP/NF electrode is constructed by the ’quenching doped Ru-phosphorization’ strategy. Relevant physical characterizations confirmed that interstitial Ru dopants promote electron reset in the Ni(Fe)Ru synergistic sites, effectively avoiding metal atom dissolution and encouraging more Ni (Fe)OOH active species. As expected, the Ru-NiFeP/NF||Ru-NiFeP/NF electrolyzer only need as low as 1.54 V to yield a current density of 1 A cm−2. In summary, this work innovatively constructs the phosphide electrode with ampere-level current density from the perspective of regulating the doping position of Ru. This provides a new design idea for optimizing the Ru doping strategy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
间隙掺杂的 Ru 可诱导丰富的 Ni(Fe)Ru 合作位点,从而提高安培级电流密度,实现整体水分离
定向诱导间隙掺杂 Ru 而不是普通的取代掺杂是一项挑战。此外,DFT 计算显示,与取代型 Ru 掺杂相比,间隙型 Ru 掺杂能诱导丰富的 Ni(Fe)Ru 合作位点,从而大大加快 HER 和 OER 的反应动力学。受此启发,我们采用 "淬火掺杂 Ru-磷化 "策略构建了间隙掺杂 Ru 的 NiFeP/NF 电极。相关的物理表征证实,间隙掺杂 Ru 可促进 Ni(Fe)Ru 协同位点的电子重置,有效避免金属原子溶解,促进更多的 Ni (Fe)OOH 活性物种。正如预期的那样,Ru-NiFeP/NF||Ru-NiFeP/NF 电解槽只需要低至 1.54 V 的电压就能产生 1 A cm-2 的电流密度。总之,这项工作从调节 Ru 掺杂位置的角度出发,创新性地构建了具有安培级电流密度的磷化电极。这为优化 Ru 掺杂策略提供了新的设计思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
A double-confined strategy for enhancing the pseudocapacitance performance of nickel-based sulfides-unveiling aqueous pseudocapacitive energy storage mechanism. Enhanced photocatalytic H2O2 production via a facile atomic diffusion strategy near tammann temperature for single atom photocatalysts. Synergistic removal of chromium(VI) and tetracycline by porous carbon sponges embedded with MoS2: Performance and radical mechanism of piezoelectric catalysis. Molten salt synthesis of 1T phase dominated O-MoS2 for enhancing photocatalytic hydrogen production performance of CdS via Ohmic junction. Awakening n-π* electron transition in structurally distorted g-C3N4 nanosheets via hexamethylenetetramine-involved supercritical CO2 treatment towards efficient photocatalytic H2 production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1