Ningsheng Xu , Fang Deng , Weiwen Huang , Li Liang , Xiang Shi
{"title":"One superior pursuer and multiple-evader differential games with two lifelines","authors":"Ningsheng Xu , Fang Deng , Weiwen Huang , Li Liang , Xiang Shi","doi":"10.1016/j.ejcon.2024.101130","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a pursuit-evasion game with multiple evaders and a superior pursuer situated on a two-dimensional plane, divided by two lifelines into the play area and goal areas. The goal of the evaders is to reach one of the two goal areas, while the pursuer aims to capture them before they reach the lifeline. This paper constructs barriers without time delay and with time delay, respectively. For each evader, the entire barrier divides the game area into regions of dominance for the evader and pursuer, respectively. Cooperative and non-cooperative strategies between two evaders are studied when the evaders’ positions are within the pursuer’s dominance region. We consider the impact of different strategies adopted by the evaders and variations in the distance between the two lifelines on the number of captures by the pursuer. Furthermore, Apollonius circles and Cartesian ovals are used to determine optimal target points for the evaders under different circumstances. Subsequently, we extend the cooperative strategies of the evaders to multiplayer cooperative games, transform them into optimization problems, and use optimization algorithm to derive the cooperative strategies of multiple evaders. Finally, numerical simulations for various cases are presented in this paper.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101130"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001900","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates a pursuit-evasion game with multiple evaders and a superior pursuer situated on a two-dimensional plane, divided by two lifelines into the play area and goal areas. The goal of the evaders is to reach one of the two goal areas, while the pursuer aims to capture them before they reach the lifeline. This paper constructs barriers without time delay and with time delay, respectively. For each evader, the entire barrier divides the game area into regions of dominance for the evader and pursuer, respectively. Cooperative and non-cooperative strategies between two evaders are studied when the evaders’ positions are within the pursuer’s dominance region. We consider the impact of different strategies adopted by the evaders and variations in the distance between the two lifelines on the number of captures by the pursuer. Furthermore, Apollonius circles and Cartesian ovals are used to determine optimal target points for the evaders under different circumstances. Subsequently, we extend the cooperative strategies of the evaders to multiplayer cooperative games, transform them into optimization problems, and use optimization algorithm to derive the cooperative strategies of multiple evaders. Finally, numerical simulations for various cases are presented in this paper.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.