Piezocatalytic techniques and materials for degradation of organic pollutants from aqueous solution

Bo Liu , Xiaolu Liu , Yang Li , Muliang Xiao , Zhongshan Chen , Suhua Wang , Hongqing Wang , Xiangke Wang
{"title":"Piezocatalytic techniques and materials for degradation of organic pollutants from aqueous solution","authors":"Bo Liu ,&nbsp;Xiaolu Liu ,&nbsp;Yang Li ,&nbsp;Muliang Xiao ,&nbsp;Zhongshan Chen ,&nbsp;Suhua Wang ,&nbsp;Hongqing Wang ,&nbsp;Xiangke Wang","doi":"10.1016/j.eehl.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of industry, agriculture, and urbanization, various organic pollutants have accumulated in natural water, posing a potential threat to both the ecological environment and human beings, and removing organic pollutants from water is an urgent priority. Piezoelectric techniques, with the advantages of green, simple operation, and high efficiency, are highly sought after in the degradation of environmental organic pollutants. Moreover, combining piezoelectric techniques with advanced oxidation processes (AOPs), photocatalysis, or electrocatalysis can further effectively promote the efficient degradation of target pollutants. Therefore, a perspective is presented on the recent progress of piezoelectric techniques for the degradation of various organic pollutants from aqueous solutions. The classification of various piezoelectric materials, as well as modification strategies for improving piezocatalysis, are first systematically summarized. Furthermore, the latest research on piezocatalysis and its combination with other technologies, such as AOPs, photocatalysis, and electrocatalysis, in the degradation of environmental pollutants is discussed. The potential mechanisms of piezocatalysis are also analyzed in depth. Finally, the urgent challenges and future opportunities for piezoelectric techniques in the degradation of organic pollutants are provided.</div></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":"3 4","pages":"Pages 418-424"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277298502400053X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of industry, agriculture, and urbanization, various organic pollutants have accumulated in natural water, posing a potential threat to both the ecological environment and human beings, and removing organic pollutants from water is an urgent priority. Piezoelectric techniques, with the advantages of green, simple operation, and high efficiency, are highly sought after in the degradation of environmental organic pollutants. Moreover, combining piezoelectric techniques with advanced oxidation processes (AOPs), photocatalysis, or electrocatalysis can further effectively promote the efficient degradation of target pollutants. Therefore, a perspective is presented on the recent progress of piezoelectric techniques for the degradation of various organic pollutants from aqueous solutions. The classification of various piezoelectric materials, as well as modification strategies for improving piezocatalysis, are first systematically summarized. Furthermore, the latest research on piezocatalysis and its combination with other technologies, such as AOPs, photocatalysis, and electrocatalysis, in the degradation of environmental pollutants is discussed. The potential mechanisms of piezocatalysis are also analyzed in depth. Finally, the urgent challenges and future opportunities for piezoelectric techniques in the degradation of organic pollutants are provided.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于降解水溶液中有机污染物的压电催化技术和材料
随着工业、农业和城市化的快速发展,天然水中积累了各种有机污染物,对生态环境和人类都构成了潜在威胁,去除水中的有机污染物已成为当务之急。压电技术具有绿色环保、操作简单、效率高等优点,在降解环境有机污染物方面备受青睐。此外,将压电技术与高级氧化过程(AOPs)、光催化或电催化相结合,可进一步有效促进目标污染物的高效降解。因此,本文介绍了压电技术在降解水溶液中各种有机污染物方面的最新进展。首先系统地总结了各种压电材料的分类以及改善压电催化的改性策略。此外,还讨论了有关压电催化及其与其他技术(如 AOP、光催化和电催化)在降解环境污染物方面结合的最新研究。此外,还深入分析了压电催化的潜在机制。最后,介绍了压电技术在降解有机污染物方面面临的紧迫挑战和未来机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eco-Environment & Health
Eco-Environment & Health 环境科学与生态学-生态、环境与健康
CiteScore
11.00
自引率
0.00%
发文量
18
审稿时长
22 days
期刊介绍: Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health. Scopes EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include: 1) Ecology and Biodiversity Conservation Biodiversity Ecological restoration Ecological safety Protected area 2) Environmental and Biological Fate of Emerging Contaminants Environmental behaviors Environmental processes Environmental microbiology 3) Human Exposure and Health Effects Environmental toxicology Environmental epidemiology Environmental health risk Food safety 4) Evaluation, Management and Regulation of Environmental Risks Chemical safety Environmental policy Health policy Health economics Environmental remediation
期刊最新文献
Leveraging the One Health concept for arsenic sustainability Effects of 3D microstructure of porous media on DNAPL migration and remediation by surface active agents in groundwater Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review Piezocatalytic techniques and materials for degradation of organic pollutants from aqueous solution Styrene and ethylbenzene exposure and type 2 diabetes mellitus: A longitudinal gene–environment interaction study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1