Computational screening of Group VⅢ@C5N4 single-atom electrocatalysts for overall water splitting

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Molecular Catalysis Pub Date : 2024-10-18 DOI:10.1016/j.mcat.2024.114619
Cuimei Li , Dong Cao , Dandan Guo , Chun-Ran Chang
{"title":"Computational screening of Group VⅢ@C5N4 single-atom electrocatalysts for overall water splitting","authors":"Cuimei Li ,&nbsp;Dong Cao ,&nbsp;Dandan Guo ,&nbsp;Chun-Ran Chang","doi":"10.1016/j.mcat.2024.114619","DOIUrl":null,"url":null,"abstract":"<div><div>Single-atom catalysts (SACs) have great potential for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) since their high atomic utilization and strong metal–support interactions. Herein, we develop TM@C<sub>5</sub>N<sub>4</sub> (TM = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt) catalysts via embedding Group VⅢ TM in holey C<sub>5</sub>N<sub>4</sub> substrate and further evaluate their electrocatalytic activity using density functional theory (DFT) calculations. Systematical studies indicate that Fe@C<sub>5</sub>N<sub>4</sub>, Pd@C<sub>5</sub>N<sub>4</sub> and Ir@C<sub>5</sub>N<sub>4</sub> catalysts all exhibit excellent HER performance, which mainly because of their small Δ<em>G</em><sub>H*</sub> values of 0.101 eV, -0.114 eV and 0.070 eV, respectively. In parallel, Rh@C<sub>5</sub>N<sub>4</sub> and Ir@C<sub>5</sub>N<sub>4</sub> possess high OER activity along with low overpotential of 0.50 V, which is superior to the commercial IrO<sub>2</sub> catalyst (0.56 V). Obviously, Ir@C<sub>5</sub>N<sub>4</sub> could be utilized as bifunctional electrocatalysts both HER and OER in water splitting. Furthermore, we analyze their correlative catalytic mechanisms using the molecular orbitals. Besides, biaxial strain modulation could effectively regulate the catalytic activity of HER and OER. Particularly, 2 % biaxial tensile strain could bring Ir@C<sub>5</sub>N<sub>4</sub> superb HER/OER catalytic performance. Finally, we anticipate that this strain engineering would provide a new perspective for developing high-performance SACs for water splitting.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114619"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008010","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atom catalysts (SACs) have great potential for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) since their high atomic utilization and strong metal–support interactions. Herein, we develop TM@C5N4 (TM = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt) catalysts via embedding Group VⅢ TM in holey C5N4 substrate and further evaluate their electrocatalytic activity using density functional theory (DFT) calculations. Systematical studies indicate that Fe@C5N4, Pd@C5N4 and Ir@C5N4 catalysts all exhibit excellent HER performance, which mainly because of their small ΔGH* values of 0.101 eV, -0.114 eV and 0.070 eV, respectively. In parallel, Rh@C5N4 and Ir@C5N4 possess high OER activity along with low overpotential of 0.50 V, which is superior to the commercial IrO2 catalyst (0.56 V). Obviously, Ir@C5N4 could be utilized as bifunctional electrocatalysts both HER and OER in water splitting. Furthermore, we analyze their correlative catalytic mechanisms using the molecular orbitals. Besides, biaxial strain modulation could effectively regulate the catalytic activity of HER and OER. Particularly, 2 % biaxial tensile strain could bring Ir@C5N4 superb HER/OER catalytic performance. Finally, we anticipate that this strain engineering would provide a new perspective for developing high-performance SACs for water splitting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算筛选用于整体水分离的 VⅢ@C5N4 族单原子电催化剂
单原子催化剂(SAC)具有原子利用率高、金属与载体相互作用强等特点,因此在氢进化反应(HER)和氧进化反应(OER)中具有巨大潜力。在此,我们通过将 V Ⅲ族 TM 嵌入孔状 C5N4 衬底,开发了 TM@C5N4(TM = Fe、Co、Ni、Ru、Rh、Pd、Os、Ir 和 Pt)催化剂,并利用密度泛函理论(DFT)计算进一步评估了它们的电催化活性。系统研究表明,Fe@C5N4、Pd@C5N4 和 Ir@C5N4 催化剂均表现出优异的 HER 性能,这主要是因为它们的 ΔGH* 值较小,分别为 0.101 eV、-0.114 eV 和 0.070 eV。同时,Rh@C5N4 和 Ir@C5N4 具有较高的 OER 活性和较低的过电位(0.50 V),优于商用 IrO2 催化剂(0.56 V)。显然,Ir@C5N4 可作为双功能电催化剂,同时具有 HER 和 OER 两种水分离活性。此外,我们还利用分子轨道分析了它们的相关催化机理。此外,双轴应变调节能有效调节 HER 和 OER 的催化活性。特别是 2% 的双轴拉伸应变可以使 Ir@C5N4 具有极佳的 HER/OER 催化性能。最后,我们预计这种应变工程将为开发用于水分离的高性能 SAC 提供一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
期刊最新文献
Proper NCoordination improves catalytic activity of graphene edge anchored Pt single atom for conversion of methane and carbon dioxide to acetic acid Spiro-linked hanging group cobalt phthalocyanine for CO2-to-methanol electrocatalysis unveiled by grand canonical density functional theory On the Mechanism of Acrylate and Propionate Silyl Esters Synthesis by Ruthenium-Catalyzed Coupling of CO2 with C2H4 in the Presence of Hydrosilanes: Combined Experimental and Computational Investigations Light alkanes dehydrogenation over silica supported gallium catalysts Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1