Unlimited sampling beyond modulo

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Applied and Computational Harmonic Analysis Pub Date : 2024-10-24 DOI:10.1016/j.acha.2024.101715
Eyar Azar , Satish Mulleti , Yonina C. Eldar
{"title":"Unlimited sampling beyond modulo","authors":"Eyar Azar ,&nbsp;Satish Mulleti ,&nbsp;Yonina C. Eldar","doi":"10.1016/j.acha.2024.101715","DOIUrl":null,"url":null,"abstract":"<div><div>Analog-to-digital converters (ADCs) act as a bridge between the analog and digital domains. Two important attributes of any ADC are sampling rate and its dynamic range. For bandlimited signals, the sampling should be above the Nyquist rate. It is also desired that the signals' dynamic range should be within that of the ADC's; otherwise, the signal will be clipped. Nonlinear operators such as modulo or companding can be used prior to sampling to avoid clipping. To recover the true signal from the samples of the nonlinear operator, either high sampling rates are required, or strict constraints on the nonlinear operations are imposed, both of which are not desirable in practice. In this paper, we propose a generalized flexible nonlinear operator which is sampling efficient. Moreover, by carefully choosing its parameters, clipping, modulo, and companding can be seen as special cases of it. We show that bandlimited signals are uniquely identified from the nonlinear samples of the proposed operator when sampled above the Nyquist rate. Furthermore, we propose a robust algorithm to recover the true signal from the nonlinear samples. Compared to the existing methods, our approach has a lower mean-squared error for a given sampling rate, noise level, and dynamic range. Our results lead to less constrained hardware design to address the dynamic range issues while operating at the lowest rate possible.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"74 ","pages":"Article 101715"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000927","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Analog-to-digital converters (ADCs) act as a bridge between the analog and digital domains. Two important attributes of any ADC are sampling rate and its dynamic range. For bandlimited signals, the sampling should be above the Nyquist rate. It is also desired that the signals' dynamic range should be within that of the ADC's; otherwise, the signal will be clipped. Nonlinear operators such as modulo or companding can be used prior to sampling to avoid clipping. To recover the true signal from the samples of the nonlinear operator, either high sampling rates are required, or strict constraints on the nonlinear operations are imposed, both of which are not desirable in practice. In this paper, we propose a generalized flexible nonlinear operator which is sampling efficient. Moreover, by carefully choosing its parameters, clipping, modulo, and companding can be seen as special cases of it. We show that bandlimited signals are uniquely identified from the nonlinear samples of the proposed operator when sampled above the Nyquist rate. Furthermore, we propose a robust algorithm to recover the true signal from the nonlinear samples. Compared to the existing methods, our approach has a lower mean-squared error for a given sampling rate, noise level, and dynamic range. Our results lead to less constrained hardware design to address the dynamic range issues while operating at the lowest rate possible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超出模数的无限采样
模数转换器(ADC)是模拟域和数字域之间的桥梁。模数转换器的两个重要特性是采样率和动态范围。对于带限信号,采样率应高于奈奎斯特速率。此外,信号的动态范围也应在 ADC 的动态范围之内,否则信号将被削波。可以在采样前使用非线性运算符(如调制或编译)来避免削波。要从非线性运算器的采样中恢复真实信号,要么需要很高的采样率,要么需要对非线性运算施加严格的限制,而这两种情况在实际应用中都不可取。在本文中,我们提出了一种具有采样效率的广义灵活非线性算子。此外,通过仔细选择其参数,削波、调制和编带都可以看作是它的特例。我们的研究表明,当采样率高于奈奎斯特率时,带限信号可从所提算子的非线性采样中唯一识别出来。此外,我们还提出了一种从非线性采样中恢复真实信号的稳健算法。与现有方法相比,我们的方法在给定的采样率、噪声电平和动态范围内具有更低的均方误差。我们的研究结果使硬件设计的限制更少,从而在尽可能低的采样率下解决动态范围问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
期刊最新文献
On quadrature for singular integral operators with complex symmetric quadratic forms Gaussian approximation for the moving averaged modulus wavelet transform and its variants Naimark-spatial families of equichordal tight fusion frames Generalization error guaranteed auto-encoder-based nonlinear model reduction for operator learning Unlimited sampling beyond modulo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1