E. Strelnikova , N. Choudhary , K. Degtyariov , D. Kriutchenko , I. Vierushkin
{"title":"Boundary element method for hypersingular integral equations: Implementation and applications in potential theory","authors":"E. Strelnikova , N. Choudhary , K. Degtyariov , D. Kriutchenko , I. Vierushkin","doi":"10.1016/j.enganabound.2024.105999","DOIUrl":null,"url":null,"abstract":"<div><div>The main objective of this paper is to develop effective numerical methods to solve hypersingular integral equations arising in various physical and mechanical applications. Both surface and contour integrals are considered. The novelty of the proposed approach lies in the exact formulas obtained for an arbitrary planar polygon in hypersingular integral estimations. A one-dimensional hypersingular integral equation is derived for axially symmetrical configurations, and analytical formulas are established for calculating the hypersingular parts. It is proved that the hypersingular component of the surface integral is equal to its hypersingular component along the tangent plane. These exact formulas enable the development of an effective numerical method based on boundary element implementation. Benchmark tests are considered, and the convergence of the proposed methods is demonstrated. Problems in crack analysis are formulated and solved using both surface and contour hypersingular integral equations. A comparison of the results is made between boundary element methods and finite element methods for penny-shaped cracks. Boundary value problems in fluid-structure interaction are considered, and numerical simulations are performed. An estimation of modes and frequencies of panel and blade vibrations when interacting with liquids is carried out.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 105999"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004727","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The main objective of this paper is to develop effective numerical methods to solve hypersingular integral equations arising in various physical and mechanical applications. Both surface and contour integrals are considered. The novelty of the proposed approach lies in the exact formulas obtained for an arbitrary planar polygon in hypersingular integral estimations. A one-dimensional hypersingular integral equation is derived for axially symmetrical configurations, and analytical formulas are established for calculating the hypersingular parts. It is proved that the hypersingular component of the surface integral is equal to its hypersingular component along the tangent plane. These exact formulas enable the development of an effective numerical method based on boundary element implementation. Benchmark tests are considered, and the convergence of the proposed methods is demonstrated. Problems in crack analysis are formulated and solved using both surface and contour hypersingular integral equations. A comparison of the results is made between boundary element methods and finite element methods for penny-shaped cracks. Boundary value problems in fluid-structure interaction are considered, and numerical simulations are performed. An estimation of modes and frequencies of panel and blade vibrations when interacting with liquids is carried out.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.