{"title":"Cotton fabric with durable flame retardancy, robust superhydrophobicity and reliable UV shielding","authors":"Canhao Zhou, Yongqiang Ma, Hui Rong, Xinghui Yu, Siyuan Liu, Liandong Deng, Jianhua Zhang, Shuangyang Li, Anjie Dong","doi":"10.1007/s10570-024-06177-0","DOIUrl":null,"url":null,"abstract":"<div><p>A new strategy for multifunctional coatings with flame retardancy, superhydrophobicity and UV shielding ability on cotton fabrics (SFR cotton) was realized by step-by-step spraying ammonium phytate, lignin and hybrid nanoparticles of polydimethylsiloxane (PDMS) modified mesoporous silica nanoparticles (MSNs) with entrapped Fe<sub>2</sub>O<sub>3</sub> (PDMS@Fe<sub>2</sub>O<sub>3</sub>-MSNs). The surface adhesion PDMS@Fe<sub>2</sub>O<sub>3</sub>-MSNs constructed micro/nano-scale surface structure on SFR cotton fabric, which endowed superhydrophobic (WCA = 152 ± 1.3°), anti-fouling and self-cleaning properties. Benefiting from the synergistic effects of the physical barrier provided by the PDMS@Fe<sub>2</sub>O<sub>3</sub>-MSNs and the intumescent flame-retardant properties of ammonium phytate and lignin, the SFR cotton fabric demonstrated excellent self-extinguishing performance under an open fire and left a char layer with 8.4 cm. In addition, due to the excellent UV-absorption ability of lignin and Fe<sub>2</sub>O<sub>3</sub> nanoparticles, the SFR cotton fabric was able to shield the UV irradiation damages to rat skin. Furthermore, the SFR cotton fabric demonstrated remarkable durability against rigorous conditions, including ultrasonic washing, sandpaper abrasion, UV irradiation and exposure to strong acid/alkali environments. After 150 min of ultrasonic washing and 50 cycles of abrasion, the SFR cotton fabric could preserve its hydrophobicity, flame retardancy and UV shielding ability. In addition, the SFR cotton fabric delivered exceptional chemical stability and UV durability when exposed to strong acid/alkali for 24 h and UV irradiation (200 W) for 12 h, respectively. Significantly, the SFR cotton fabric could retain the original flexibility and breathability of pristine cotton fabric. Therefore, the simple and feasible strategy of multifunctional coatings has broad application prospects in advanced multifunctional textiles, military facilities and other fields.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 16","pages":"10025 - 10043"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06177-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
A new strategy for multifunctional coatings with flame retardancy, superhydrophobicity and UV shielding ability on cotton fabrics (SFR cotton) was realized by step-by-step spraying ammonium phytate, lignin and hybrid nanoparticles of polydimethylsiloxane (PDMS) modified mesoporous silica nanoparticles (MSNs) with entrapped Fe2O3 (PDMS@Fe2O3-MSNs). The surface adhesion PDMS@Fe2O3-MSNs constructed micro/nano-scale surface structure on SFR cotton fabric, which endowed superhydrophobic (WCA = 152 ± 1.3°), anti-fouling and self-cleaning properties. Benefiting from the synergistic effects of the physical barrier provided by the PDMS@Fe2O3-MSNs and the intumescent flame-retardant properties of ammonium phytate and lignin, the SFR cotton fabric demonstrated excellent self-extinguishing performance under an open fire and left a char layer with 8.4 cm. In addition, due to the excellent UV-absorption ability of lignin and Fe2O3 nanoparticles, the SFR cotton fabric was able to shield the UV irradiation damages to rat skin. Furthermore, the SFR cotton fabric demonstrated remarkable durability against rigorous conditions, including ultrasonic washing, sandpaper abrasion, UV irradiation and exposure to strong acid/alkali environments. After 150 min of ultrasonic washing and 50 cycles of abrasion, the SFR cotton fabric could preserve its hydrophobicity, flame retardancy and UV shielding ability. In addition, the SFR cotton fabric delivered exceptional chemical stability and UV durability when exposed to strong acid/alkali for 24 h and UV irradiation (200 W) for 12 h, respectively. Significantly, the SFR cotton fabric could retain the original flexibility and breathability of pristine cotton fabric. Therefore, the simple and feasible strategy of multifunctional coatings has broad application prospects in advanced multifunctional textiles, military facilities and other fields.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.