Jiayan Yu, Haibo Wang, Diqiang Wang, Xu Cheng, Xiaosheng Du, Shuang Wang, Zongliang Du
{"title":"High mechanical strength, flame retardant, and waterproof silanized cellulose nanofiber composite foam for thermal insulation","authors":"Jiayan Yu, Haibo Wang, Diqiang Wang, Xu Cheng, Xiaosheng Du, Shuang Wang, Zongliang Du","doi":"10.1007/s10570-024-06157-4","DOIUrl":null,"url":null,"abstract":"<p>With a growing focus on sustainable building thermal regulation for buildings, cellulose foams have emerged as promising materials due to their low thermal conductivity and biodegradable properties. However, their flammability and hygroscopic nature limit practical applications. This is attributed to the abundant hydroxy groups of cellulose. In this study, a sustainable, simple, and cost-effective method was proposed for the synthesis of multifunctional thermal insulation materials based on cellulose nanofiber composite foam with hydrophobic, flame retardant, and thermally insulating performance. As a result, the cellulose nanofiber composite foam showed a high mechanical modulus (6.3 ± 0.3 MPa), high compression strength (0.78 ± 0.10 MPa), and specific modulus (246.2 ± 34.4 MPa·cm<sup>3</sup>·g⁻<sup>1</sup>). The homogeneous three-dimensional (3D) porous network structure of cellulose nanofiber composite foam resulted in outstanding thermal insulation capabilities (LOI values of 60.7 ± 3.2, UL-94 V-0 rating) and low thermal conductivity (36.3 ± 0.8 mW·m⁻<sup>1</sup> K⁻<sup>1</sup>). Furthermore, the incorporation of phytic acid (PA) imparted high flame retardancy, while cellulose nanofiber composite foam modified with 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (POTS) maintained outstanding hydrophobicity (static water contact angle of 145.5° ± 0.2°) even under harsh environmental conditions. In this way, it is believed that cellulose nanofiber composite foam with light weight, high mechanical strength, thermal insulation, high flame retardancy, and hydrophobicity has great potential in thermal insulation materials.</p>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 16","pages":"9865 - 9885"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06157-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
With a growing focus on sustainable building thermal regulation for buildings, cellulose foams have emerged as promising materials due to their low thermal conductivity and biodegradable properties. However, their flammability and hygroscopic nature limit practical applications. This is attributed to the abundant hydroxy groups of cellulose. In this study, a sustainable, simple, and cost-effective method was proposed for the synthesis of multifunctional thermal insulation materials based on cellulose nanofiber composite foam with hydrophobic, flame retardant, and thermally insulating performance. As a result, the cellulose nanofiber composite foam showed a high mechanical modulus (6.3 ± 0.3 MPa), high compression strength (0.78 ± 0.10 MPa), and specific modulus (246.2 ± 34.4 MPa·cm3·g⁻1). The homogeneous three-dimensional (3D) porous network structure of cellulose nanofiber composite foam resulted in outstanding thermal insulation capabilities (LOI values of 60.7 ± 3.2, UL-94 V-0 rating) and low thermal conductivity (36.3 ± 0.8 mW·m⁻1 K⁻1). Furthermore, the incorporation of phytic acid (PA) imparted high flame retardancy, while cellulose nanofiber composite foam modified with 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (POTS) maintained outstanding hydrophobicity (static water contact angle of 145.5° ± 0.2°) even under harsh environmental conditions. In this way, it is believed that cellulose nanofiber composite foam with light weight, high mechanical strength, thermal insulation, high flame retardancy, and hydrophobicity has great potential in thermal insulation materials.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.