Kerri Kosziwka, Steven J. Cooke, Karen E. Smokorowski, Friedrich Fischer, Erin S. Dunlop, Michael D. Rennie, Thomas C. Pratt
{"title":"The spatial extent of Walleye and Lake Sturgeon spawning migrations below a dam in the lower Black Sturgeon River, Lake Superior","authors":"Kerri Kosziwka, Steven J. Cooke, Karen E. Smokorowski, Friedrich Fischer, Erin S. Dunlop, Michael D. Rennie, Thomas C. Pratt","doi":"10.1111/eff.12792","DOIUrl":null,"url":null,"abstract":"<p>In the Laurentian Great Lakes, the issue of barrier removal is complicated by the presence of non-native species below barriers. A fish tracking study was conducted to guide efforts for barrier remediation decisions for the restoration of fish populations with a focus on Walleye (<i>Scander vitreus</i>) and Lake Sturgeon (<i>Acipenser fulvescens</i>) in the Black Sturgeon River, a river system fragmented by a dam which blocks access of fishes to the majority of a large, otherwise barrier-free watershed. Data from 3 years of spawning migrations (2018–2020) indicated that the Walleye population in Black Bay likely consists of both river (65%) and lake spawners (27%), with the remaining individuals spawning in the bay or river in different years. Walleye and Lake Sturgeon showed consistent differences in the extent to which individuals migrated upstream in the river during the spawning season, despite expectations that both species would spawn at the base of the dam when prevented from further migration. The dam was presumably a barrier to migration for Lake Sturgeon, as nearly all Lake Sturgeon that entered the river migrated to the base of the dam. In contrast, few Walleye entering the river during the spawning season migrated to the dam annually. These findings suggest that Walleye and Lake Sturgeon may not benefit equally, at least in the short term, from barrier remediation or dam removal.</p>","PeriodicalId":11422,"journal":{"name":"Ecology of Freshwater Fish","volume":"33 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eff.12792","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology of Freshwater Fish","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eff.12792","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
In the Laurentian Great Lakes, the issue of barrier removal is complicated by the presence of non-native species below barriers. A fish tracking study was conducted to guide efforts for barrier remediation decisions for the restoration of fish populations with a focus on Walleye (Scander vitreus) and Lake Sturgeon (Acipenser fulvescens) in the Black Sturgeon River, a river system fragmented by a dam which blocks access of fishes to the majority of a large, otherwise barrier-free watershed. Data from 3 years of spawning migrations (2018–2020) indicated that the Walleye population in Black Bay likely consists of both river (65%) and lake spawners (27%), with the remaining individuals spawning in the bay or river in different years. Walleye and Lake Sturgeon showed consistent differences in the extent to which individuals migrated upstream in the river during the spawning season, despite expectations that both species would spawn at the base of the dam when prevented from further migration. The dam was presumably a barrier to migration for Lake Sturgeon, as nearly all Lake Sturgeon that entered the river migrated to the base of the dam. In contrast, few Walleye entering the river during the spawning season migrated to the dam annually. These findings suggest that Walleye and Lake Sturgeon may not benefit equally, at least in the short term, from barrier remediation or dam removal.
期刊介绍:
Ecology of Freshwater Fish publishes original contributions on all aspects of fish ecology in freshwater environments, including lakes, reservoirs, rivers, and streams. Manuscripts involving ecologically-oriented studies of behavior, conservation, development, genetics, life history, physiology, and host-parasite interactions are welcomed. Studies involving population ecology and community ecology are also of interest, as are evolutionary approaches including studies of population biology, evolutionary ecology, behavioral ecology, and historical ecology. Papers addressing the life stages of anadromous and catadromous species in estuaries and inshore coastal zones are considered if they contribute to the general understanding of freshwater fish ecology. Theoretical and modeling studies are suitable if they generate testable hypotheses, as are those with implications for fisheries. Manuscripts presenting analyses of published data are considered if they produce novel conclusions or syntheses. The journal publishes articles, fresh perspectives, and reviews and, occasionally, the proceedings of conferences and symposia.