Marion Bocquet, Sara Fleury, Frédérique Rémy, Fanny Piras
{"title":"Arctic and Antarctic Sea Ice Thickness and Volume Changes From Observations Between 1994 and 2023","authors":"Marion Bocquet, Sara Fleury, Frédérique Rémy, Fanny Piras","doi":"10.1029/2023JC020848","DOIUrl":null,"url":null,"abstract":"<p>Both Arctic and Antarctic sea ice are affected by climate change. While Arctic sea ice has been declining for several decades, Antarctic sea ice extent slowly increased until 2015, followed by a sharp drop in 2016. Quantifying sea ice changes is essential to assess their impacts on the ocean, atmosphere, ecosystems and Arctic communities. In this study, we combine sea ice thickness estimates from four satellite radar altimeters to derive the longest time series of homogeneous sea ice thickness for both hemispheres over 30 years (1994–2023). The record supports the rapid loss of sea ice in the Arctic for each month of the year and the heterogeneous changes in sea ice thickness in the Antarctic. The study confirms that most of the volume variability is due to the thickness variability, which holds true for both hemispheres. The sea ice thickness time series presented here offer new insights for models, in particular the possibility to evaluate sea ice reanalyses and to initialize forecasts, especially in the Antarctic, where the data set presented here has no equivalent in terms of spatial and temporal coverage.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"129 11","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JC020848","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JC020848","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Both Arctic and Antarctic sea ice are affected by climate change. While Arctic sea ice has been declining for several decades, Antarctic sea ice extent slowly increased until 2015, followed by a sharp drop in 2016. Quantifying sea ice changes is essential to assess their impacts on the ocean, atmosphere, ecosystems and Arctic communities. In this study, we combine sea ice thickness estimates from four satellite radar altimeters to derive the longest time series of homogeneous sea ice thickness for both hemispheres over 30 years (1994–2023). The record supports the rapid loss of sea ice in the Arctic for each month of the year and the heterogeneous changes in sea ice thickness in the Antarctic. The study confirms that most of the volume variability is due to the thickness variability, which holds true for both hemispheres. The sea ice thickness time series presented here offer new insights for models, in particular the possibility to evaluate sea ice reanalyses and to initialize forecasts, especially in the Antarctic, where the data set presented here has no equivalent in terms of spatial and temporal coverage.