The decrease in Rad51 and DNA ligase IV nuclear protein expression in Msh2 knockdown HC11 cells induced the low CRISPR/Cas9-mediated knock-in efficiency at the β-casein gene locus.
{"title":"The decrease in Rad51 and DNA ligase IV nuclear protein expression in Msh2 knockdown HC11 cells induced the low CRISPR/Cas9-mediated knock-in efficiency at the β-casein gene locus.","authors":"Ga-Yeon Kim, Man-Jong Kang","doi":"10.5713/ab.24.0206","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Successful gene editing technology is crucial in molecular biology and related fields. An essential part of an efficient knock-in system is increasing homologous recombination (HR) efficiency in the double-strand break (DSB) repair pathways. Interestingly, HR is closely related to the DNA mismatch repair (MMR) pathway, whereby MMR-related gene Msh2 recognizes a mismatch of nucleotides in recombinant intermediates or gene conversion formed during HR. This study aimed to investigate how the knockdown of Msh2 affects HR-mediated knock-in efficiency at the mouse β-casein locus. Therefore, we investigated the effect of inhibiting Msh2 expression on the expression of the HR-related gene Rad51 and the key enzyme DNA ligase IV involved in non-homologous end joining (NHEJ).</p><p><strong>Methods: </strong>The knock-in vector targeting the mouse β-casein gene locus, programmed guide RNA, and Msh2 siRNA expression vector were co-transfected in HC11 cells, or only the Msh2 siRNA expression vector was transfected. Knock-in efficiency was confirmed by polymerase chain reaction (PCR). The mRNA and protein expression of Msh2, HR-related gene Rad51, and NHEJ-related gene DNA ligase IV were evaluated by quantitative reverse transcription PCR (RT-qPCR) and Western blot analysis.</p><p><strong>Results: </strong>The knock-in vector efficiency at the mouse β-casein gene locus significantly decreased upon Msh2 knockdown in HC11 mouse mammary epithelial cells (HC11 cell). Additionally, the knockdown of the DNA MMR-related gene Msh2 protein significantly downregulated the nuclear protein expression of the HR-related Rad51 and NHEJ-related DNA ligase IV genes.</p><p><strong>Conclusion: </strong>The decreased Msh2 protein expression in the nucleus downregulated the Rad51 and ligase IV protein expressions. Consequently, reduced Rad51 expression results in decreased knock-in efficiency.</p>","PeriodicalId":7825,"journal":{"name":"Animal Bioscience","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Bioscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5713/ab.24.0206","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Successful gene editing technology is crucial in molecular biology and related fields. An essential part of an efficient knock-in system is increasing homologous recombination (HR) efficiency in the double-strand break (DSB) repair pathways. Interestingly, HR is closely related to the DNA mismatch repair (MMR) pathway, whereby MMR-related gene Msh2 recognizes a mismatch of nucleotides in recombinant intermediates or gene conversion formed during HR. This study aimed to investigate how the knockdown of Msh2 affects HR-mediated knock-in efficiency at the mouse β-casein locus. Therefore, we investigated the effect of inhibiting Msh2 expression on the expression of the HR-related gene Rad51 and the key enzyme DNA ligase IV involved in non-homologous end joining (NHEJ).
Methods: The knock-in vector targeting the mouse β-casein gene locus, programmed guide RNA, and Msh2 siRNA expression vector were co-transfected in HC11 cells, or only the Msh2 siRNA expression vector was transfected. Knock-in efficiency was confirmed by polymerase chain reaction (PCR). The mRNA and protein expression of Msh2, HR-related gene Rad51, and NHEJ-related gene DNA ligase IV were evaluated by quantitative reverse transcription PCR (RT-qPCR) and Western blot analysis.
Results: The knock-in vector efficiency at the mouse β-casein gene locus significantly decreased upon Msh2 knockdown in HC11 mouse mammary epithelial cells (HC11 cell). Additionally, the knockdown of the DNA MMR-related gene Msh2 protein significantly downregulated the nuclear protein expression of the HR-related Rad51 and NHEJ-related DNA ligase IV genes.
Conclusion: The decreased Msh2 protein expression in the nucleus downregulated the Rad51 and ligase IV protein expressions. Consequently, reduced Rad51 expression results in decreased knock-in efficiency.