{"title":"Protective role of 2-aminothiazole derivative against ethanol-induced teratogenic effects in-vivo zebrafish","authors":"","doi":"10.1016/j.bcp.2024.116601","DOIUrl":null,"url":null,"abstract":"<div><div>Teratology investigates the origins of congenital disabilities, often linked to environmental factors such as ethanol (EtOH) exposure. Ethanol at 150 μM has been associated with teratogenic effects, oxidative stress, immunological responses, and endocrine disruptions. Fetal alcohol spectrum disorder (FASD) arises from maternal alcohol consumption during pregnancy, leading to developmental delays and cognitive impairment. Due to their diverse therapeutic applications, amino thiazole derivatives are crucial in drug development. This study aimed to determine whether the 2-amino thiazole derivative, notably the 1-(4-chlorophenyl)-N-(6-nitrobenzo[d]thiazol-2-yl)ethan-1-imine (N4) compound, reduces teratogenic effects induced by embryonic EtOH exposure in a zebrafish model. Teratogenic effects, mortality, locomotion behaviour, oxidative stress, gene expression, and tissue damage were evaluated in larvae over a 7-day experimental period using three treatment concentrations (50, 100, and 150 μM). Results showed that EtOH induced morphological defects in the head, eyes, and body length of exposed larvae, along with behavioural abnormalities and oxidative damage. N4 effectively mitigated these toxic effects in a concentration-dependent manner, reducing oxidative damage, preventing teratogenic effects, and averting tissue damage induced by EtOH exposure. This study highlights the potential of N4 to enhance antioxidant and anti-inflammatory effects against ethanol-induced oxidative stress, offering promising therapeutic strategies for FASD treatment.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224006014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Teratology investigates the origins of congenital disabilities, often linked to environmental factors such as ethanol (EtOH) exposure. Ethanol at 150 μM has been associated with teratogenic effects, oxidative stress, immunological responses, and endocrine disruptions. Fetal alcohol spectrum disorder (FASD) arises from maternal alcohol consumption during pregnancy, leading to developmental delays and cognitive impairment. Due to their diverse therapeutic applications, amino thiazole derivatives are crucial in drug development. This study aimed to determine whether the 2-amino thiazole derivative, notably the 1-(4-chlorophenyl)-N-(6-nitrobenzo[d]thiazol-2-yl)ethan-1-imine (N4) compound, reduces teratogenic effects induced by embryonic EtOH exposure in a zebrafish model. Teratogenic effects, mortality, locomotion behaviour, oxidative stress, gene expression, and tissue damage were evaluated in larvae over a 7-day experimental period using three treatment concentrations (50, 100, and 150 μM). Results showed that EtOH induced morphological defects in the head, eyes, and body length of exposed larvae, along with behavioural abnormalities and oxidative damage. N4 effectively mitigated these toxic effects in a concentration-dependent manner, reducing oxidative damage, preventing teratogenic effects, and averting tissue damage induced by EtOH exposure. This study highlights the potential of N4 to enhance antioxidant and anti-inflammatory effects against ethanol-induced oxidative stress, offering promising therapeutic strategies for FASD treatment.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.