Stability indicating RP-HPLC method development and validation for quantification of impurities in gonadotropin-releasing hormone (Elagolix): Robustness study by quality by design.
{"title":"Stability indicating RP-HPLC method development and validation for quantification of impurities in gonadotropin-releasing hormone (Elagolix): Robustness study by quality by design.","authors":"Lova Gani Raju Bandaru, Phani Raja Kanuparthy, Nagalakshmi Jeedimalla, Bhukya Vijay Nayak, Jayaprakash Kanijam Raghupathi, Naresh Kumar Katari, Rambabu Gundla","doi":"10.1002/bmc.6036","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this research was to establish and validate a reverse phase HPLC method for the determination of Elagolix impurities in pharmaceutical dosage form. Mobile phase A, consisting of 10 mM sodium dihydrogen phosphate (pH 6.0) and acetonitrile in a 95:5 v/v ratio, and mobile phase B, containing 85:10:5 v/v/v of acetonitrile, Milli-Q water, and methanol, were used to achieve the method's specificity in the analytical column Kromasil 100-C18 (250 mm × 4.6 mm, 5 μm). The gradient program includes (%B/Time [min]: 36/0, 36/10, 38/15, 85/55, 85/65, 36/67, and 36/75). The flow rate is 0.8 mL/min. The overall run duration is 75.0 min, the injection volume is 10.0 μL, and the detection is at 210 nm in UV. The samples were subjected to hydrolysis, oxidation, and heat conditions in order to facilitate their forced degradation. The procedure was validated and determined with the standards of ICH guidelines. From the LOQ to a concentration level of 200%, the linearity of the technique was ascertained. An accuracy range of LOQ to 150% was established for the method, and the average recovery was acceptable. Design of experiments, part of the quality by design idea, was used to prove the method's reliability.</p>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":" ","pages":"e6036"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/bmc.6036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this research was to establish and validate a reverse phase HPLC method for the determination of Elagolix impurities in pharmaceutical dosage form. Mobile phase A, consisting of 10 mM sodium dihydrogen phosphate (pH 6.0) and acetonitrile in a 95:5 v/v ratio, and mobile phase B, containing 85:10:5 v/v/v of acetonitrile, Milli-Q water, and methanol, were used to achieve the method's specificity in the analytical column Kromasil 100-C18 (250 mm × 4.6 mm, 5 μm). The gradient program includes (%B/Time [min]: 36/0, 36/10, 38/15, 85/55, 85/65, 36/67, and 36/75). The flow rate is 0.8 mL/min. The overall run duration is 75.0 min, the injection volume is 10.0 μL, and the detection is at 210 nm in UV. The samples were subjected to hydrolysis, oxidation, and heat conditions in order to facilitate their forced degradation. The procedure was validated and determined with the standards of ICH guidelines. From the LOQ to a concentration level of 200%, the linearity of the technique was ascertained. An accuracy range of LOQ to 150% was established for the method, and the average recovery was acceptable. Design of experiments, part of the quality by design idea, was used to prove the method's reliability.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.