{"title":"Flavin-containing monooxygenase 2 confers cardioprotection in ischemia models through its disulfide bond catalytic activity.","authors":"Qingnian Liu, Jiniu Huang, Hao Ding, Yue Tao, Jinliang Nan, Changchen Xiao, Yingchao Wang, Rongrong Wu, Cheng Ni, Zhiwei Zhong, Wei Zhu, Jinghai Chen, Chenyun Zhang, Xiao He, Danyang Xiong, Xinyang Hu, Jian'an Wang","doi":"10.1172/JCI177077","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial infarction (MI) is characterized by massive cardiomyocyte (CM) death and cardiac dysfunction, and effective therapies to achieve cardioprotection are greatly needed. Here, we report that flavin-containing monooxygenase 2 (FMO2) levels were markedly increased in CMs in both ex vivo and in vivo models of ischemic injury. Genetic deletion of FMO2 resulted in reduced CM survival and enhanced cardiac dysfunction, whereas CM-specific FMO2 overexpression conferred a protective effect in infarcted rat hearts. Mechanistically, FMO2 inhibited the activation of ER stress-induced apoptotic proteins, including caspase 12 and C/EBP homologous protein (CHOP), by downregulating the unfolded protein response pathway. Furthermore, we identified FMO2 as a chaperone that catalyzes disulfide bond formation in unfolded and misfolded proteins through its GVSG motif. GVSG-mutated FMO2 failed to catalyze disulfide bond formation and lost its protection against ER stress and CM death. Finally, we demonstrated the protective effect of FMO2 in a human induced pluripotent stem cell-derived CM model. Collectively, this study highlights FMO2 as a key modulator of oxidative protein folding in CMs and underscores its therapeutic potential for treating ischemic heart disease.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645147/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI177077","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Myocardial infarction (MI) is characterized by massive cardiomyocyte (CM) death and cardiac dysfunction, and effective therapies to achieve cardioprotection are greatly needed. Here, we report that flavin-containing monooxygenase 2 (FMO2) levels were markedly increased in CMs in both ex vivo and in vivo models of ischemic injury. Genetic deletion of FMO2 resulted in reduced CM survival and enhanced cardiac dysfunction, whereas CM-specific FMO2 overexpression conferred a protective effect in infarcted rat hearts. Mechanistically, FMO2 inhibited the activation of ER stress-induced apoptotic proteins, including caspase 12 and C/EBP homologous protein (CHOP), by downregulating the unfolded protein response pathway. Furthermore, we identified FMO2 as a chaperone that catalyzes disulfide bond formation in unfolded and misfolded proteins through its GVSG motif. GVSG-mutated FMO2 failed to catalyze disulfide bond formation and lost its protection against ER stress and CM death. Finally, we demonstrated the protective effect of FMO2 in a human induced pluripotent stem cell-derived CM model. Collectively, this study highlights FMO2 as a key modulator of oxidative protein folding in CMs and underscores its therapeutic potential for treating ischemic heart disease.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.