Application of atomic force microscopy in the development of amorphous solid dispersion.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Journal of pharmaceutical sciences Pub Date : 2024-10-30 DOI:10.1016/j.xphs.2024.10.036
Soumalya Chakraborty, Arvind K Bansal
{"title":"Application of atomic force microscopy in the development of amorphous solid dispersion.","authors":"Soumalya Chakraborty, Arvind K Bansal","doi":"10.1016/j.xphs.2024.10.036","DOIUrl":null,"url":null,"abstract":"<p><p>Development of Amorphous Solid Dispersion (ASD) requires an in-depth characterization at different stages due to its structural and functional complexity. Various tools are conventionally used to investigate the processing, stability, and functionality of ASDs. However, many subtle features remain poorly understood due to lack of nano-scale characterization tools in routine practice. Atomic force microscopy (AFM) is a type of scanning probe microscopy, used for high resolution imaging and measuring features at the nano-scale. In recent years AFM has been used increasingly as a characterization tool in different areas of the development of ASD, including drug-polymer miscibility, localized characterization of the phase separated domains, lateral molecular diffusivity on ASD surface, crystallinity and crystallization kinetics in ASD, phase behavior of ASD during dissolution, and conformation of polymer during dissolution. In this review, we have highlighted the current applications of AFM in capturing critical aspects of stability and dissolution behavior of ASD. Potential areas of future development in this domain have been discussed.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2024.10.036","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Development of Amorphous Solid Dispersion (ASD) requires an in-depth characterization at different stages due to its structural and functional complexity. Various tools are conventionally used to investigate the processing, stability, and functionality of ASDs. However, many subtle features remain poorly understood due to lack of nano-scale characterization tools in routine practice. Atomic force microscopy (AFM) is a type of scanning probe microscopy, used for high resolution imaging and measuring features at the nano-scale. In recent years AFM has been used increasingly as a characterization tool in different areas of the development of ASD, including drug-polymer miscibility, localized characterization of the phase separated domains, lateral molecular diffusivity on ASD surface, crystallinity and crystallization kinetics in ASD, phase behavior of ASD during dissolution, and conformation of polymer during dissolution. In this review, we have highlighted the current applications of AFM in capturing critical aspects of stability and dissolution behavior of ASD. Potential areas of future development in this domain have been discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原子力显微镜在无定形固体分散体开发中的应用。
由于无定形固体分散体(ASD)结构和功能的复杂性,其开发需要在不同阶段进行深入表征。人们通常使用各种工具来研究 ASD 的加工、稳定性和功能性。然而,由于缺乏纳米尺度的常规表征工具,人们对许多微妙的特征仍然知之甚少。原子力显微镜(AFM)是一种扫描探针显微镜,用于高分辨率成像和测量纳米尺度的特征。近年来,原子力显微镜作为一种表征工具已越来越多地应用于 ASD 开发的不同领域,包括药物与聚合物的混溶性、相分离域的局部表征、ASD 表面的横向分子扩散性、ASD 的结晶度和结晶动力学、ASD 在溶解过程中的相行为以及聚合物在溶解过程中的构象。在本综述中,我们重点介绍了原子力显微镜目前在捕捉 ASD 稳定性和溶解行为关键方面的应用。还讨论了该领域未来发展的潜在领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
13.20%
发文量
367
审稿时长
33 days
期刊介绍: The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.
期刊最新文献
Complemental Hard Modeling in Raman spectroscopy - A case study on titanium dioxide-free coating in-line monitoring. A Workflow for Accurate and Consistent Quantitation of Host Cell Proteins by SWATH LC-MS/MS Analysis to Support Process Development. Controlled Self-Assembly of Macrocyclic Peptide into Multifunctional Photoluminescent Nanoparticles. Limitation of Anion Exchange Chromatography and Potential Application of Hydrophobic Interaction Chromatography for Monitoring AAV9 Capsid Degradation Upon Thermal Stress. Ultrasound/Magnetic Resonance Bimodal Imaging-Guided CD20-Targeted Multifunctional Nanoplatform for Photothermal/Chemo Synergistic Therapy of B-Cell Lymphoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1