Samuel S Boyd, Dakota R Robarts, Khue Nguyen, Maite Villar, Ibtihal M Alghusen, Manasi Kotulkar, Aspin Denson, Halyna Fedosyuk, Stephen A Whelan, Norman C Y Lee, John Hanover, Wagner B Dias, Ee Phie Tan, Steven R McGreal, Antonio Artigues, Russell H Swerdlow, Jeffrey A Thompson, Udayan Apte, Chad Slawson
{"title":"Multi-Omics after O-GlcNAc Alteration Identified Cellular Processes Promoting Aneuploidy after Loss of O-GlcNAc Transferase.","authors":"Samuel S Boyd, Dakota R Robarts, Khue Nguyen, Maite Villar, Ibtihal M Alghusen, Manasi Kotulkar, Aspin Denson, Halyna Fedosyuk, Stephen A Whelan, Norman C Y Lee, John Hanover, Wagner B Dias, Ee Phie Tan, Steven R McGreal, Antonio Artigues, Russell H Swerdlow, Jeffrey A Thompson, Udayan Apte, Chad Slawson","doi":"10.1016/j.molmet.2024.102060","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmacologic or genetic manipulation of O-GlcNAcylation, an intracellular, single sugar post-translational modification, are difficult to interpret due to the pleotropic nature of O-GlcNAc and the vast signaling pathways it regulates. To address this issue, we employed either OGT (O-GlcNAc transferase), OGA (O-GlcNAcase) liver knockouts, or pharmacological inhibition of OGA coupled with multi-Omics analysis and bioinformatics. We identified numerous genes, proteins, phospho-proteins, or metabolites that were either inversely or equivalently changed between conditions. Moreover, we identified pathways in OGT knockout samples associated with increased aneuploidy. To test and validate these pathways, we induced liver growth in OGT knockouts by partial hepatectomy. OGT knockout livers showed a robust aneuploidy phenotype with disruptions in mitosis, nutrient sensing, protein metabolism/amino acid metabolism, stress response, and HIPPO signaling demonstrating how OGT is essential in controlling aneuploidy pathways. Moreover, these data show how a multi-Omics platform can discern how OGT can fine-tune multiple cellular pathways involved in in aneuploidy.</p>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmet.2024.102060","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmacologic or genetic manipulation of O-GlcNAcylation, an intracellular, single sugar post-translational modification, are difficult to interpret due to the pleotropic nature of O-GlcNAc and the vast signaling pathways it regulates. To address this issue, we employed either OGT (O-GlcNAc transferase), OGA (O-GlcNAcase) liver knockouts, or pharmacological inhibition of OGA coupled with multi-Omics analysis and bioinformatics. We identified numerous genes, proteins, phospho-proteins, or metabolites that were either inversely or equivalently changed between conditions. Moreover, we identified pathways in OGT knockout samples associated with increased aneuploidy. To test and validate these pathways, we induced liver growth in OGT knockouts by partial hepatectomy. OGT knockout livers showed a robust aneuploidy phenotype with disruptions in mitosis, nutrient sensing, protein metabolism/amino acid metabolism, stress response, and HIPPO signaling demonstrating how OGT is essential in controlling aneuploidy pathways. Moreover, these data show how a multi-Omics platform can discern how OGT can fine-tune multiple cellular pathways involved in in aneuploidy.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.