The MCP-3/Ccr3 axis contributes to increased bone mass by affecting osteoblast and osteoclast differentiation.

IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Experimental and Molecular Medicine Pub Date : 2024-11-01 DOI:10.1038/s12276-024-01344-6
Jung Ha Kim, Kabsun Kim, Inyoung Kim, Semun Seong, Xiangguo Che, Je-Yong Choi, Jeong-Tae Koh, Nacksung Kim
{"title":"The MCP-3/Ccr3 axis contributes to increased bone mass by affecting osteoblast and osteoclast differentiation.","authors":"Jung Ha Kim, Kabsun Kim, Inyoung Kim, Semun Seong, Xiangguo Che, Je-Yong Choi, Jeong-Tae Koh, Nacksung Kim","doi":"10.1038/s12276-024-01344-6","DOIUrl":null,"url":null,"abstract":"<p><p>Several CC subfamily chemokines have been reported to regulate bone metabolism by affecting osteoblast or osteoclast differentiation. However, the role of monocyte chemotactic protein 3 (MCP-3), a CC chemokine, in bone remodeling is not well understood. Here, we show that MCP-3 regulates bone remodeling by promoting osteoblast differentiation and inhibiting osteoclast differentiation. In a Ccr3-dependent manner, MCP-3 promoted osteoblast differentiation by stimulating p38 phosphorylation and suppressed osteoclast differentiation by upregulating interferon beta. MCP-3 increased bone morphogenetic protein 2-induced ectopic bone formation, and mice with MCP-3-overexpressing osteoblast precursor cells presented increased bone mass. Moreover, MCP-3 exhibited therapeutic effects by abrogating receptor activator of nuclear factor kappa-B ligand-induced bone loss. Therefore, MCP-3 has therapeutic potential for diseases involving bone loss due to its positive role in osteoblast differentiation and negative role in osteoclast differentiation.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s12276-024-01344-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Several CC subfamily chemokines have been reported to regulate bone metabolism by affecting osteoblast or osteoclast differentiation. However, the role of monocyte chemotactic protein 3 (MCP-3), a CC chemokine, in bone remodeling is not well understood. Here, we show that MCP-3 regulates bone remodeling by promoting osteoblast differentiation and inhibiting osteoclast differentiation. In a Ccr3-dependent manner, MCP-3 promoted osteoblast differentiation by stimulating p38 phosphorylation and suppressed osteoclast differentiation by upregulating interferon beta. MCP-3 increased bone morphogenetic protein 2-induced ectopic bone formation, and mice with MCP-3-overexpressing osteoblast precursor cells presented increased bone mass. Moreover, MCP-3 exhibited therapeutic effects by abrogating receptor activator of nuclear factor kappa-B ligand-induced bone loss. Therefore, MCP-3 has therapeutic potential for diseases involving bone loss due to its positive role in osteoblast differentiation and negative role in osteoclast differentiation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MCP-3/Ccr3 轴通过影响成骨细胞和破骨细胞的分化来增加骨量。
据报道,多种 CC 亚家族趋化因子可通过影响成骨细胞或破骨细胞的分化来调节骨代谢。然而,单核细胞趋化蛋白 3(MCP-3)是一种 CC 趋化因子,它在骨重塑中的作用尚不十分清楚。在这里,我们发现 MCP-3 通过促进成骨细胞分化和抑制破骨细胞分化来调节骨重塑。在 Ccr3 依赖性作用下,MCP-3 通过刺激 p38 磷酸化促进成骨细胞分化,并通过上调干扰素 beta 抑制破骨细胞分化。MCP-3 增加了骨形态发生蛋白 2 诱导的异位骨形成,过表达 MCP-3 的成骨细胞前体细胞的小鼠骨量增加。此外,MCP-3 还具有抑制核因子卡巴-B 受体激活剂配体诱导的骨质流失的治疗效果。因此,由于 MCP-3 在成骨细胞分化中的积极作用和在破骨细胞分化中的消极作用,它对涉及骨质流失的疾病具有治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental and Molecular Medicine
Experimental and Molecular Medicine 医学-生化与分子生物学
CiteScore
19.50
自引率
0.80%
发文量
166
审稿时长
3 months
期刊介绍: Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.
期刊最新文献
Influencing immunity: role of extracellular vesicles in tumor immune checkpoint dynamics. Sorcin can trigger pancreatic cancer-associated new-onset diabetes through the secretion of inflammatory cytokines such as serpin E1 and CCL5. Lactate utilization in Lace1 knockout mice promotes browning of inguinal white adipose tissue. SUMOylation of TP53INP1 is involved in miR-30a-5p-regulated heart senescence. The muscle-intervertebral disc interaction mediated by L-BAIBA modulates extracellular matrix homeostasis and PANoptosis in nucleus pulposus cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1