{"title":"Multi-Region Markovian Gaussian Process: An Efficient Method to Discover Directional Communications Across Multiple Brain Regions.","authors":"Weihan Li, Chengrui Li, Yule Wang, Anqi Wu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Studying the complex interactions between different brain regions is crucial in neuroscience. Various statistical methods have explored the latent communication across multiple brain regions. Two main categories are the Gaussian Process (GP) and Linear Dynamical System (LDS), each with unique strengths. The GP-based approach effectively discovers latent variables with frequency bands and communication directions. Conversely, the LDS-based approach is computationally efficient but lacks powerful expressiveness in latent representation. In this study, we merge both methodologies by creating an LDS mirroring a multi-output GP, termed Multi-Region Markovian Gaussian Process (MRM-GP). Our work establishes a connection between an LDS and a multi-output GP that explicitly models frequencies and phase delays within the latent space of neural recordings. Consequently, the model achieves a linear inference cost over time points and provides an interpretable low-dimensional representation, revealing communication directions across brain regions and separating oscillatory communications into different frequency bands.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"235 ","pages":"28112-28131"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Studying the complex interactions between different brain regions is crucial in neuroscience. Various statistical methods have explored the latent communication across multiple brain regions. Two main categories are the Gaussian Process (GP) and Linear Dynamical System (LDS), each with unique strengths. The GP-based approach effectively discovers latent variables with frequency bands and communication directions. Conversely, the LDS-based approach is computationally efficient but lacks powerful expressiveness in latent representation. In this study, we merge both methodologies by creating an LDS mirroring a multi-output GP, termed Multi-Region Markovian Gaussian Process (MRM-GP). Our work establishes a connection between an LDS and a multi-output GP that explicitly models frequencies and phase delays within the latent space of neural recordings. Consequently, the model achieves a linear inference cost over time points and provides an interpretable low-dimensional representation, revealing communication directions across brain regions and separating oscillatory communications into different frequency bands.
研究不同脑区之间复杂的相互作用对神经科学至关重要。各种统计方法探索了多个脑区之间的潜在交流。其中两大类是高斯过程(GP)和线性动力系统(LDS),它们各有千秋。基于 GP 的方法能有效发现具有频带和通信方向的潜变量。相反,基于 LDS 的方法计算效率高,但在潜在表示方面缺乏强大的表现力。在本研究中,我们将这两种方法融合在一起,创建了一个反映多输出 GP 的 LDS,称为多区域马尔可夫高斯过程(MRM-GP)。我们的研究在 LDS 和多输出 GP 之间建立了联系,明确地模拟了神经记录潜空间内的频率和相位延迟。因此,该模型在时间点上实现了线性推理成本,并提供了可解释的低维表示,揭示了跨脑区的通信方向,并将振荡通信分离为不同的频段。