{"title":"Bioinspired nanovesicles derived from macrophage accelerate wound healing by promoting angiogenesis and collagen deposition.","authors":"Tingrui Zhang, Zongguang Tai, Fengze Miao, Yingchao Zhao, Weifan Wang, Quangang Zhu, Zhongjian Chen","doi":"10.1039/d3tb02158k","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages play a crucial role in the process of wound healing. In order to effectively inhibit excessive inflammation and facilitate skin wound healing, it is necessary to transform overactive M1 macrophages in injured tissues into the M2 type. In this study, we have successfully generated bioinspired nanovesicles (referred to as M2BNVs) from M2 type macrophages. These nanovesicles not only possess physical and biological properties that closely resemble exosomes, but also offer a simpler preparation process and more abundant yield. Owing to their distinctive endogenous cargo, M2BNVs have the ability to re-educate M1 macrophages, shifting their phenotype towards the M2 type which is known to promote healing and possess anti-inflammatory properties. Consequently, M2BNVs effectively improve the prevailing pro-inflammatory microenvironment within the wound. Furthermore, M2BNVs also facilitate wound tissue regeneration and angiogenesis. Collectively, our findings demonstrate the potential of M2BNVs in promoting wound healing in mice.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d3tb02158k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Macrophages play a crucial role in the process of wound healing. In order to effectively inhibit excessive inflammation and facilitate skin wound healing, it is necessary to transform overactive M1 macrophages in injured tissues into the M2 type. In this study, we have successfully generated bioinspired nanovesicles (referred to as M2BNVs) from M2 type macrophages. These nanovesicles not only possess physical and biological properties that closely resemble exosomes, but also offer a simpler preparation process and more abundant yield. Owing to their distinctive endogenous cargo, M2BNVs have the ability to re-educate M1 macrophages, shifting their phenotype towards the M2 type which is known to promote healing and possess anti-inflammatory properties. Consequently, M2BNVs effectively improve the prevailing pro-inflammatory microenvironment within the wound. Furthermore, M2BNVs also facilitate wound tissue regeneration and angiogenesis. Collectively, our findings demonstrate the potential of M2BNVs in promoting wound healing in mice.