Automated Deep Learning-Based Detection of Early Atherosclerotic Plaques in Carotid Ultrasound Imaging.

Murad Omarov, Lanyue Zhang, Saman Doroodgar Jorshery, Rainer Malik, Barnali Das, Tiffany R Bellomo, Ulrich Mansmann, Martin J Menten, Pradeep Natarajan, Martin Dichgans, Marianne Kalic, Vineet K Raghu, Klaus Berger, Christopher D Anderson, Marios K Georgakis
{"title":"Automated Deep Learning-Based Detection of Early Atherosclerotic Plaques in Carotid Ultrasound Imaging.","authors":"Murad Omarov, Lanyue Zhang, Saman Doroodgar Jorshery, Rainer Malik, Barnali Das, Tiffany R Bellomo, Ulrich Mansmann, Martin J Menten, Pradeep Natarajan, Martin Dichgans, Marianne Kalic, Vineet K Raghu, Klaus Berger, Christopher D Anderson, Marios K Georgakis","doi":"10.1101/2024.10.17.24315675","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Carotid plaque presence is associated with cardiovascular risk, even among asymptomatic individuals. While deep learning has shown promise for carotid plaque phenotyping in patients with advanced atherosclerosis, its application in population-based settings of asymptomatic individuals remains unexplored.</p><p><strong>Methods: </strong>We developed a YOLOv8-based model for plaque detection using carotid ultrasound images from 19,499 participants of the population-based UK Biobank (UKB) and fine-tuned it for external validation in the BiDirect study (N = 2,105). Cox regression was used to estimate the impact of plaque presence and count on major cardiovascular events. To explore the genetic architecture of carotid atherosclerosis, we conducted a genome-wide association study (GWAS) meta-analysis of the UKB and CHARGE cohorts. Mendelian randomization (MR) assessed the effect of genetic predisposition to vascular risk factors on carotid atherosclerosis.</p><p><strong>Results: </strong>Our model demonstrated high performance with accuracy, sensitivity, and specificity exceeding 85%, enabling identification of carotid plaques in 45% of the UKB population (aged 47-83 years). In the external BiDirect cohort, a fine-tuned model achieved 86% accuracy, 78% sensitivity, and 90% specificity. Plaque presence and count were associated with risk of major adverse cardiovascular events (MACE) over a follow-up of up to seven years, improving risk reclassification beyond the Pooled Cohort Equations. A GWAS meta-analysis of carotid plaques uncovered two novel genomic loci, with downstream analyses implicating targets of investigational drugs in advanced clinical development. Observational and MR analyses showed associations between smoking, LDL cholesterol, hypertension, and odds of carotid atherosclerosis.</p><p><strong>Conclusions: </strong>Our model offers a scalable solution for early carotid plaque detection, potentially enabling automated screening in asymptomatic individuals and improving plaque phenotyping in population-based cohorts. This approach could advance large-scale atherosclerosis research.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527046/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.17.24315675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Carotid plaque presence is associated with cardiovascular risk, even among asymptomatic individuals. While deep learning has shown promise for carotid plaque phenotyping in patients with advanced atherosclerosis, its application in population-based settings of asymptomatic individuals remains unexplored.

Methods: We developed a YOLOv8-based model for plaque detection using carotid ultrasound images from 19,499 participants of the population-based UK Biobank (UKB) and fine-tuned it for external validation in the BiDirect study (N = 2,105). Cox regression was used to estimate the impact of plaque presence and count on major cardiovascular events. To explore the genetic architecture of carotid atherosclerosis, we conducted a genome-wide association study (GWAS) meta-analysis of the UKB and CHARGE cohorts. Mendelian randomization (MR) assessed the effect of genetic predisposition to vascular risk factors on carotid atherosclerosis.

Results: Our model demonstrated high performance with accuracy, sensitivity, and specificity exceeding 85%, enabling identification of carotid plaques in 45% of the UKB population (aged 47-83 years). In the external BiDirect cohort, a fine-tuned model achieved 86% accuracy, 78% sensitivity, and 90% specificity. Plaque presence and count were associated with risk of major adverse cardiovascular events (MACE) over a follow-up of up to seven years, improving risk reclassification beyond the Pooled Cohort Equations. A GWAS meta-analysis of carotid plaques uncovered two novel genomic loci, with downstream analyses implicating targets of investigational drugs in advanced clinical development. Observational and MR analyses showed associations between smoking, LDL cholesterol, hypertension, and odds of carotid atherosclerosis.

Conclusions: Our model offers a scalable solution for early carotid plaque detection, potentially enabling automated screening in asymptomatic individuals and improving plaque phenotyping in population-based cohorts. This approach could advance large-scale atherosclerosis research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的颈动脉斑块检测为心血管风险预测提供信息,并揭示动脉粥样硬化的遗传驱动因素。
动脉粥样硬化性心血管疾病是导致全球死亡的主要原因,其驱动力是动脉壁内的脂质积累和斑块形成。通过超声波检测颈动脉斑块是亚临床动脉粥样硬化的公认标志。在这项研究中,我们训练了一个深度学习模型来检测来自 19499 名英国生物库(UKB)参与者(年龄在 47-83 岁之间)的 177757 张颈动脉超声图像中的斑块,以评估大型人群队列中颈动脉粥样硬化的患病率、风险因素、预后意义和遗传结构。该模型的准确性、灵敏度、特异性和阳性预测值分别为89.3%、89.5%、89.2%和82.9%,在45%的人群中识别出了颈动脉斑块,表现出很高的性能指标。在长达7年的中位随访期内,斑块的存在和数量与未来的心血管事件有明显的相关性,从而改进了风险再分类,超越了既有的临床预测模型。颈动脉斑块的全基因组关联研究(GWAS)荟萃分析(29,790 例病例,36,847 例对照)发现了两个新的基因组位点(p < 5×10 -8),下游分析显示这两个位点与脂蛋白(a)和白细胞介素-6 信号转导有关,这两个位点都是正在临床开发的研究药物的靶点。观察和孟德尔随机分析表明,吸烟、低密度脂蛋白胆固醇和高血压与颈动脉斑块存在的几率有关。我们的研究强调了颈动脉斑块评估在改善心血管风险预测方面的潜力,为亚临床动脉粥样硬化的遗传基础提供了新的见解,并为推进人群规模的动脉粥样硬化研究提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Unified Rubric and Similarity Metric for Biomedical Publication Types and Study Designs. Social Determinants of Health Associated with Multiple Myeloma Incidence and Survival among a Low-Income Cohort in the Southeastern U.S. Evaluation of a serum protein signature as monitoring biomarker for Duchenne Muscular Dystrophy in a long-term clinical trial with corticosteroids. Ultrasound-guided skeletal muscle biopsy technique permits measurement of structural, functional, cellular and biochemical properties. Personas Shift Clinical Action Thresholds in Large Language Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1