Jia-Jing Li, Xiao-Jian Zhou, Juan Ao, Jin-Tao Gao, An-Ni Wang, Zhuang-Lin Shen, Yang Gu, Jia-Hai Zhou and Yong-Zheng Chen*,
{"title":"P450DA Monooxygenase-Catalyzed Chemoselective and Enantiodivergent Epoxidation of Unactivated Alkenes","authors":"Jia-Jing Li, Xiao-Jian Zhou, Juan Ao, Jin-Tao Gao, An-Ni Wang, Zhuang-Lin Shen, Yang Gu, Jia-Hai Zhou and Yong-Zheng Chen*, ","doi":"10.1021/acscatal.4c0494110.1021/acscatal.4c04941","DOIUrl":null,"url":null,"abstract":"<p >While enzymatic epoxidation of activated olefins by P450s has been well-established, chemo- and enantioselective epoxidation of unactivated olefins remains a formidable challenge, mainly due to the presence of competing hydroxylation of allylic C–H bonds. In addition, P450 monooxygenase-catalyzed epoxidation of olefins generally provides <i>S</i>-configured products with high enantiopurity, and examples of P450 enzymes demonstrating high <i>R</i>-enantioselectivity in epoxidation reactions remain rare. Herein, we report a chemoselective and enantiodivergent epoxidation of unactivated alkenes using engineered P450DA monooxygenases. The P450DA variants, obtained through structure-guided directed evolution based on the X-ray of P450DA-WT and P450DA-M3, switch the reactivity from the native hydroxylation of the allylic C–H bonds to epoxidation of C═C bonds and exhibit superior chemoselectivity (up to 99% epoxidation selectivity) and enantioselectivity (up to >99:1 er), delivering a wide variety of versatile and enantioenriched epoxides. Notably, an enantiodivergent synthesis was achieved simply by employing different P450DA variants, leading to both enantiomers of the epoxide products. Various transformations of the products were carried out, illustrating the synthetic utilities of the methods. Furthermore, molecular dockings and molecular dynamics simulations reveal the origin of high epoxidation selectivity and complementary stereoselectivity of the mutants.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 21","pages":"16175–16183 16175–16183"},"PeriodicalIF":11.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c04941","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
While enzymatic epoxidation of activated olefins by P450s has been well-established, chemo- and enantioselective epoxidation of unactivated olefins remains a formidable challenge, mainly due to the presence of competing hydroxylation of allylic C–H bonds. In addition, P450 monooxygenase-catalyzed epoxidation of olefins generally provides S-configured products with high enantiopurity, and examples of P450 enzymes demonstrating high R-enantioselectivity in epoxidation reactions remain rare. Herein, we report a chemoselective and enantiodivergent epoxidation of unactivated alkenes using engineered P450DA monooxygenases. The P450DA variants, obtained through structure-guided directed evolution based on the X-ray of P450DA-WT and P450DA-M3, switch the reactivity from the native hydroxylation of the allylic C–H bonds to epoxidation of C═C bonds and exhibit superior chemoselectivity (up to 99% epoxidation selectivity) and enantioselectivity (up to >99:1 er), delivering a wide variety of versatile and enantioenriched epoxides. Notably, an enantiodivergent synthesis was achieved simply by employing different P450DA variants, leading to both enantiomers of the epoxide products. Various transformations of the products were carried out, illustrating the synthetic utilities of the methods. Furthermore, molecular dockings and molecular dynamics simulations reveal the origin of high epoxidation selectivity and complementary stereoselectivity of the mutants.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.