Sekwang Baek, Ju Young Lee, Min Jae Kang, Minho Kim* and Eun Jeong Yoo*,
{"title":"Strategic 1,9-Proton-Transfer-Driven Cycloaddition: Synthesis and Stereoselective Contraction of Nine-Membered Heterocycles","authors":"Sekwang Baek, Ju Young Lee, Min Jae Kang, Minho Kim* and Eun Jeong Yoo*, ","doi":"10.1021/acscatal.4c0551410.1021/acscatal.4c05514","DOIUrl":null,"url":null,"abstract":"<p >We introduce a phosphine-catalyzed cycloaddition involving unprecedented long-range intramolecular proton transfer, facilitating the synthesis of nine-membered heterocycles, which are privileged structures in natural products, as well as potent pharmacophores. Experimental and computational studies revealed that the enamide tether of the N-aromatic zwitterion directly enables long-range regioselective intramolecular proton transfer to proceed independently of outer-sphere proton shuttling. This understanding of selective proton transfer has led to the improved efficiency and regioselectivity of the desired 1,9-proton transfer reaction under anhydrous conditions, thereby advancing the development of higher-order cycloaddition reactions. Further stereoselective contraction of the synthesized nine-membered cyclic compounds using 3-aza-Cope rearrangement demonstrates the synthetic versatility of our approach. The findings of this study not only advance the general understanding of the long-range proton transfer mechanism but also broaden its practical utility in various chemical fields.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 21","pages":"16105–16114 16105–16114"},"PeriodicalIF":11.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c05514","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a phosphine-catalyzed cycloaddition involving unprecedented long-range intramolecular proton transfer, facilitating the synthesis of nine-membered heterocycles, which are privileged structures in natural products, as well as potent pharmacophores. Experimental and computational studies revealed that the enamide tether of the N-aromatic zwitterion directly enables long-range regioselective intramolecular proton transfer to proceed independently of outer-sphere proton shuttling. This understanding of selective proton transfer has led to the improved efficiency and regioselectivity of the desired 1,9-proton transfer reaction under anhydrous conditions, thereby advancing the development of higher-order cycloaddition reactions. Further stereoselective contraction of the synthesized nine-membered cyclic compounds using 3-aza-Cope rearrangement demonstrates the synthetic versatility of our approach. The findings of this study not only advance the general understanding of the long-range proton transfer mechanism but also broaden its practical utility in various chemical fields.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.