Merging Consecutive PET Processes within a Metal–Organic Cage for Abiotic–Biotic Combined Photocatalytic Biomass Reforming

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-10-22 DOI:10.1021/acscatal.4c0601810.1021/acscatal.4c06018
Zhefan Li, Junkai Cai*, Lingxiao Wang and Chunying Duan*, 
{"title":"Merging Consecutive PET Processes within a Metal–Organic Cage for Abiotic–Biotic Combined Photocatalytic Biomass Reforming","authors":"Zhefan Li,&nbsp;Junkai Cai*,&nbsp;Lingxiao Wang and Chunying Duan*,&nbsp;","doi":"10.1021/acscatal.4c0601810.1021/acscatal.4c06018","DOIUrl":null,"url":null,"abstract":"<p >Combining abiotic photocatalytic modules with enzymatic conversion to reform biomass represents a compelling way for sustainable energy schemes but faces marked challenges on the electron and proton transport corresponding to the cofactor regeneration and shuttling between biotic and abiotic partners. Herein, we report a consecutive photoinduced electron-transfer approach to reform biomass into fuels and active H-source for nitroarene reduction by grafting a cage-dye-NADH (nicotinamide adenine dinucleotide) clathrate with glucose dehydrogenase (GDH). Under light irradiation, the cage-dye-NADH clathrate acts as a photoactive relay to conduct two photoinduced 1e<sup>–</sup> electron-transfer reactions consecutively with a 2e<sup>–</sup> oxidation of NADH to NAD<sup>+</sup>, guaranteeing an orderly path related to cofactor regeneration. When the clathrate is positioned inside the pocket of GDH to join a biotic NAD<sup>+</sup>-mediated synthesis, the metal–organic artificial enzyme facilitates fast cofactor generation and shuttling between the artificial clathrate and the native enzyme within one working module. The grafting enzyme combines artificial photocatalysis and enzymatic dehydrogenation to endow an efficient conversion of biomass feedstocks into green H-source, innovating a unique paradigm for the sustainable energy scheme that combines energy of two photons in one turnover cycle. The superiority of the grafting enzyme allows the direct hydrogenation and reduction of fine chemicals and enables tandem nitroarene reduction with a turnover number reaching 15,000, providing a distinguished avenue for biomass utilization and solar energy conversion.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 21","pages":"16374–16382 16374–16382"},"PeriodicalIF":11.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c06018","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Combining abiotic photocatalytic modules with enzymatic conversion to reform biomass represents a compelling way for sustainable energy schemes but faces marked challenges on the electron and proton transport corresponding to the cofactor regeneration and shuttling between biotic and abiotic partners. Herein, we report a consecutive photoinduced electron-transfer approach to reform biomass into fuels and active H-source for nitroarene reduction by grafting a cage-dye-NADH (nicotinamide adenine dinucleotide) clathrate with glucose dehydrogenase (GDH). Under light irradiation, the cage-dye-NADH clathrate acts as a photoactive relay to conduct two photoinduced 1e electron-transfer reactions consecutively with a 2e oxidation of NADH to NAD+, guaranteeing an orderly path related to cofactor regeneration. When the clathrate is positioned inside the pocket of GDH to join a biotic NAD+-mediated synthesis, the metal–organic artificial enzyme facilitates fast cofactor generation and shuttling between the artificial clathrate and the native enzyme within one working module. The grafting enzyme combines artificial photocatalysis and enzymatic dehydrogenation to endow an efficient conversion of biomass feedstocks into green H-source, innovating a unique paradigm for the sustainable energy scheme that combines energy of two photons in one turnover cycle. The superiority of the grafting enzyme allows the direct hydrogenation and reduction of fine chemicals and enables tandem nitroarene reduction with a turnover number reaching 15,000, providing a distinguished avenue for biomass utilization and solar energy conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在金属有机笼内合并连续 PET 过程,实现非生物-生物联合光催化生物质转化
将非生物光催化模块与酶转化结合起来改造生物质是实现可持续能源计划的一个重要途径,但在电子和质子传输、辅助因子再生以及在生物和非生物伙伴之间穿梭等方面面临着明显的挑战。在此,我们报告了一种连续的光诱导电子传递方法,通过将笼染-NADH(烟酰胺腺嘌呤二核苷酸)凝胶体与葡萄糖脱氢酶(GDH)接枝,将生物质转化为燃料和用于硝基炔还原的活性氢源。在光照射下,笼状-染料-NADH 离合器作为光活性中继器,连续进行两个光诱导的 1e 电子转移反应,以及 NADH 氧化为 NAD+的 2e 反应,从而保证了与辅助因子再生有关的有序路径。当凝集物被置于 GDH 的口袋内以加入生物 NAD+介导的合成时,金属有机人工酶可在一个工作模块内促进人工凝集物与原生酶之间的快速辅因子生成和穿梭。接枝酶结合了人工光催化和酶法脱氢,可将生物质原料高效转化为绿色氢源,为在一个循环中结合两种光子能量的可持续能源方案创新了一种独特的模式。接枝酶的优越性使其能够直接氢化和还原精细化学品,并能串联还原硝基炔,其周转次数可达 15,000 次,为生物质利用和太阳能转换提供了一条独特的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Catalytic Mechanism of SARS-CoV-2 3-Chymotrypsin-Like Protease as Determined by Steady-State and Pre-Steady-State Kinetics Developing Robust Ceria-Supported Catalysts for Catalytic NO Reduction and CO/Hydrocarbon Oxidation Boosting Catalytic Hydrogen Transfer Cascade Reactions via Tandem Catalyst Design by Coupling Co Single Atoms with Adjacent Co Clusters Pulsed Electrolysis in Membrane Electrode Assembly Architecture for Enhanced Electrochemical Nitrate Reduction Reaction to Ammonia Synthesis of Unsymmetrical Disulfides via Photocatalytic Hydrodisulfuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1