Maham Liaqat, Emma McDonald, Robert Jervine Valdez Ortega, Aaron Lopes, Flavia Codreanu, Hannah Carlisle, Challa V. Kumar, Xudong Yao, James F. Rusling and Jie He*,
{"title":"Cu-Albumin Artificial Enzymes with Peroxidase and Oxidase Activity for Stereoselective Oxidations","authors":"Maham Liaqat, Emma McDonald, Robert Jervine Valdez Ortega, Aaron Lopes, Flavia Codreanu, Hannah Carlisle, Challa V. Kumar, Xudong Yao, James F. Rusling and Jie He*, ","doi":"10.1021/acscatal.4c0573210.1021/acscatal.4c05732","DOIUrl":null,"url":null,"abstract":"<p >We herein report a design of artificial enzymes by incorporating a synthetic copper complex into noncatalytic bovine serum albumin (Cu-BSA) to carry out stereoselective oxidation. This Cu-BSA catalyst with stably bound Cu complex as a cofactor shows peroxidase-like activity to catalyze epoxidation of styrene with high chiral selectivity (>99%) to R-styrene epoxide. With the electrochemical conversion of Cu<sup>2+</sup> to Cu<sup>+</sup>, Cu-BSA also exhibits oxidase-like activity to selectively reduce oxygen to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), which can be combined with its peroxidase function to drive oxidation of C═C bonds using air. This artificial enzymatic system holds promise for chiral-selective transformations of non-natural substances and highlights the versatility of noncatalytic proteins in the design of artificial enzymes.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 21","pages":"16344–16352 16344–16352"},"PeriodicalIF":11.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c05732","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We herein report a design of artificial enzymes by incorporating a synthetic copper complex into noncatalytic bovine serum albumin (Cu-BSA) to carry out stereoselective oxidation. This Cu-BSA catalyst with stably bound Cu complex as a cofactor shows peroxidase-like activity to catalyze epoxidation of styrene with high chiral selectivity (>99%) to R-styrene epoxide. With the electrochemical conversion of Cu2+ to Cu+, Cu-BSA also exhibits oxidase-like activity to selectively reduce oxygen to hydrogen peroxide (H2O2), which can be combined with its peroxidase function to drive oxidation of C═C bonds using air. This artificial enzymatic system holds promise for chiral-selective transformations of non-natural substances and highlights the versatility of noncatalytic proteins in the design of artificial enzymes.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.