An adaptive learning strategy for surrogate modeling of high-dimensional functions - Application to unsteady hypersonic flows in chemical nonequilibrium
Clément Scherding , Georgios Rigas , Denis Sipp , Peter J. Schmid , Taraneh Sayadi
{"title":"An adaptive learning strategy for surrogate modeling of high-dimensional functions - Application to unsteady hypersonic flows in chemical nonequilibrium","authors":"Clément Scherding , Georgios Rigas , Denis Sipp , Peter J. Schmid , Taraneh Sayadi","doi":"10.1016/j.cpc.2024.109404","DOIUrl":null,"url":null,"abstract":"<div><div>Many engineering applications rely on the evaluation of expensive, non-linear high-dimensional functions. In this paper, we propose the RONAALP algorithm (<strong>R</strong>educed <strong>O</strong>rder <strong>N</strong>onlinear <strong>A</strong>pproximation with <strong>A</strong>daptive <strong>L</strong>earning <strong>P</strong>rocedure) to incrementally learn, on-the-fly as the application progresses, a fast and accurate reduced-order surrogate model of a target function. First, a combination of nonlinear auto-encoder, community clustering, and radial basis function networks allows us to learn an efficient and compact surrogate model with limited training data. Secondly, an active learning procedure overcomes any extrapolation issues during the online stage by adapting the surrogate model with high-fidelity evaluations that fall outside its current validity range. This approach results in generalizable, fast, and accurate reduced-order models of high-dimensional functions. The method is demonstrated on three direct numerical simulations of hypersonic flows in chemical nonequilibrium. Accurate simulations of these flows rely on detailed thermochemical gas models that dramatically increase the cost of such calculations. Using RONAALP to learn a reduced-order thermodynamic model surrogate on-the-fly, the cost of such simulations was reduced by up to 75% while maintaining an error of less than 10% on relevant quantities of interest.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"307 ","pages":"Article 109404"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003278","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Many engineering applications rely on the evaluation of expensive, non-linear high-dimensional functions. In this paper, we propose the RONAALP algorithm (Reduced Order Nonlinear Approximation with Adaptive Learning Procedure) to incrementally learn, on-the-fly as the application progresses, a fast and accurate reduced-order surrogate model of a target function. First, a combination of nonlinear auto-encoder, community clustering, and radial basis function networks allows us to learn an efficient and compact surrogate model with limited training data. Secondly, an active learning procedure overcomes any extrapolation issues during the online stage by adapting the surrogate model with high-fidelity evaluations that fall outside its current validity range. This approach results in generalizable, fast, and accurate reduced-order models of high-dimensional functions. The method is demonstrated on three direct numerical simulations of hypersonic flows in chemical nonequilibrium. Accurate simulations of these flows rely on detailed thermochemical gas models that dramatically increase the cost of such calculations. Using RONAALP to learn a reduced-order thermodynamic model surrogate on-the-fly, the cost of such simulations was reduced by up to 75% while maintaining an error of less than 10% on relevant quantities of interest.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.