{"title":"Effective deep-learning brain MRI super resolution using simulated training data","authors":"Aymen Ayaz , Rien Boonstoppel , Cristian Lorenz , Juergen Weese , Josien Pluim , Marcel Breeuwer","doi":"10.1016/j.compbiomed.2024.109301","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><div>In the field of medical imaging, high-resolution (HR) magnetic resonance imaging (MRI) is essential for accurate disease diagnosis and analysis. However, HR imaging is prone to artifacts and is not universally available. Consequently, low-resolution (LR) MRI images are typically acquired. Deep learning (DL)-based super-resolution (SR) techniques can transform LR images into HR quality. However, these techniques require paired HR-LR data for training the SR networks.</div></div><div><h3>Objective:</h3><div>This research aims to investigate the potential of simulated brain MRI data to train DL-based SR networks.</div></div><div><h3>Methods:</h3><div>We simulated a large set of anatomically diverse, voxel-aligned, and artifact-free brain MRI data at different resolutions. We utilized this simulated data to train four distinct DL-based SR networks and augment their training. The trained networks were then evaluated using real data from various sources.</div></div><div><h3>Results:</h3><div>With our trained networks, we produced <span><math><mrow><mn>0</mn><mo>.</mo><mn>7</mn><mspace></mspace><mi>mm</mi></mrow></math></span> SR images from standard <span><math><mrow><mn>1</mn><mspace></mspace><mi>mm</mi></mrow></math></span> resolution multi-source T1w brain MRI. Our experimental results demonstrate that the trained networks significantly enhance the sharpness of LR input MR images. For single-source images, the performance of networks trained solely on simulated data is slightly inferior to those trained solely on real data, with an average structural similarity index (SSIM) difference of 0.025. However, networks augmented with simulated data outperform those trained on single-source real data when evaluated across datasets from multiple sources.</div></div><div><h3>Conclusion:</h3><div>Paired HR-LR simulated brain MRI data is suitable for training and augmenting diverse brain MRI SR networks. Augmenting the training data with simulated data can enhance the generalizability of the SR networks across real datasets from multiple sources.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"183 ","pages":"Article 109301"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524013866","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background:
In the field of medical imaging, high-resolution (HR) magnetic resonance imaging (MRI) is essential for accurate disease diagnosis and analysis. However, HR imaging is prone to artifacts and is not universally available. Consequently, low-resolution (LR) MRI images are typically acquired. Deep learning (DL)-based super-resolution (SR) techniques can transform LR images into HR quality. However, these techniques require paired HR-LR data for training the SR networks.
Objective:
This research aims to investigate the potential of simulated brain MRI data to train DL-based SR networks.
Methods:
We simulated a large set of anatomically diverse, voxel-aligned, and artifact-free brain MRI data at different resolutions. We utilized this simulated data to train four distinct DL-based SR networks and augment their training. The trained networks were then evaluated using real data from various sources.
Results:
With our trained networks, we produced SR images from standard resolution multi-source T1w brain MRI. Our experimental results demonstrate that the trained networks significantly enhance the sharpness of LR input MR images. For single-source images, the performance of networks trained solely on simulated data is slightly inferior to those trained solely on real data, with an average structural similarity index (SSIM) difference of 0.025. However, networks augmented with simulated data outperform those trained on single-source real data when evaluated across datasets from multiple sources.
Conclusion:
Paired HR-LR simulated brain MRI data is suitable for training and augmenting diverse brain MRI SR networks. Augmenting the training data with simulated data can enhance the generalizability of the SR networks across real datasets from multiple sources.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.