Chenxi Jin, Yang Yang, Chao Han, Ting Lei, Chen Li, Bing Lu
{"title":"Evaluation of forecasted wind speed at turbine hub height and wind ramps by five NWP models with observations from 262 wind farms over China","authors":"Chenxi Jin, Yang Yang, Chao Han, Ting Lei, Chen Li, Bing Lu","doi":"10.1002/met.70007","DOIUrl":null,"url":null,"abstract":"<p>Accurate wind speed forecasts are essential for optimizing the efficiency of wind energy operations. Currently, there is limited research on nationwide assessment of predictive performance in multiple numerical weather prediction (NWP) models for wind speed at turbine hub height over China, especially concerning wind ramp events. Utilizing observed measurements from 262 wind farms, this study evaluated the performance of five NWP models in forecasting the mean state and spatiotemporal variations of wind speed as well as wind ramps. The results indicated that the European Center for Medium-Range Weather Forecast Integrated Forecasting System (ECMWF–IFS) performed the best in forecasting climatological wind speed with a temporal correlation coefficient (TCC) of 0.74 and root mean square error (RMSE) of 2.34 m s<sup>−1</sup>. Although not widely utilized in China, the model from Meteo-France (MF–ARPEGE) showed promising potential for wind energy forecasting with a TCC of 0.72 and RMSE of 2.45 m s<sup>−1</sup>. In terms of temporal variations of wind speed, all the models could reasonably predict the seasonal variations of wind speed, whereas only three NWP models were able to capture the characteristics of the observed diurnal variation. An error decomposition analysis further revealed that the primary source of predicted error for wind speed was the sequence error component (SEQU), indicating the model errors were mainly attributed from the temporal inconsistency between forecasts and observations. Furthermore, the occurrences of wind ramps were generally underestimated by NWP models, while this shortcoming can be partly overcome by improving the time resolution of NWP models.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.70007","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate wind speed forecasts are essential for optimizing the efficiency of wind energy operations. Currently, there is limited research on nationwide assessment of predictive performance in multiple numerical weather prediction (NWP) models for wind speed at turbine hub height over China, especially concerning wind ramp events. Utilizing observed measurements from 262 wind farms, this study evaluated the performance of five NWP models in forecasting the mean state and spatiotemporal variations of wind speed as well as wind ramps. The results indicated that the European Center for Medium-Range Weather Forecast Integrated Forecasting System (ECMWF–IFS) performed the best in forecasting climatological wind speed with a temporal correlation coefficient (TCC) of 0.74 and root mean square error (RMSE) of 2.34 m s−1. Although not widely utilized in China, the model from Meteo-France (MF–ARPEGE) showed promising potential for wind energy forecasting with a TCC of 0.72 and RMSE of 2.45 m s−1. In terms of temporal variations of wind speed, all the models could reasonably predict the seasonal variations of wind speed, whereas only three NWP models were able to capture the characteristics of the observed diurnal variation. An error decomposition analysis further revealed that the primary source of predicted error for wind speed was the sequence error component (SEQU), indicating the model errors were mainly attributed from the temporal inconsistency between forecasts and observations. Furthermore, the occurrences of wind ramps were generally underestimated by NWP models, while this shortcoming can be partly overcome by improving the time resolution of NWP models.
期刊介绍:
The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including:
applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits;
forecasting, warning and service delivery techniques and methods;
weather hazards, their analysis and prediction;
performance, verification and value of numerical models and forecasting services;
practical applications of ocean and climate models;
education and training.