Carbon quantum dot-mediated binary metal–organic framework nanosheets for efficient oxygen evolution at ampere-level current densities in proton exchange membrane electrolyzers†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-11-01 DOI:10.1039/D4TA06855F
Qianjia Ni, Shiyuan Zhang, Kang Wang, Huazhang Guo, Jiye Zhang, Minghong Wu and Liang Wang
{"title":"Carbon quantum dot-mediated binary metal–organic framework nanosheets for efficient oxygen evolution at ampere-level current densities in proton exchange membrane electrolyzers†","authors":"Qianjia Ni, Shiyuan Zhang, Kang Wang, Huazhang Guo, Jiye Zhang, Minghong Wu and Liang Wang","doi":"10.1039/D4TA06855F","DOIUrl":null,"url":null,"abstract":"<p >The widespread utilization of noble metal-based catalysts for the oxygen evolution reaction (OER) is hindered by their rarity and substantial expense, posing significant challenges for large-scale applications. Therefore, developing an efficient OER electrocatalyst for proton exchange membrane (PEM) water electrolyzers remains a significant challenge. Here, we present a bottom-up synthesis strategy utilizing ultrasound-assisted exfoliation to design nickel–iron bimetallic organic framework (NiFe-MOF) nanosheets with high electrooxidation activity, <em>in situ</em> induced by carbon quantum dots (CQDs). This approach eliminates the reliance on intricate and inefficient exfoliation techniques, producing NiFe-MOF nanosheets with a regulated thickness of just 10 nm. This enhanced electron transport induced by CQDs plays a pivotal role in improving the OER performance of NiFe-MOF, achieving a current density of 10 mA cm<small><sup>−2</sup></small> with an overpotential of only 280 mV, with a Tafel slope of 71.98 mV dec<small><sup>−1</sup></small>, lower <em>R</em><small><sub>ct</sub></small>, and larger ECSA. <em>In situ</em> FTIR spectroscopy suggests that the OER mechanism in NiFe-MOF-CQD mainly follows the adsorbate evolution mechanism. The NiFe-MOF-CQD catalyst demonstrates remarkable durability and resilience during PEM water electrolysis, reaching industrially relevant current densities of 2 A cm<small><sup>−2</sup></small> at 2 V. This research's results not only promote green and low-carbon development but also inject new vitality into the development of hydrogen energy technologies.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 45","pages":" 31253-31261"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta06855f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread utilization of noble metal-based catalysts for the oxygen evolution reaction (OER) is hindered by their rarity and substantial expense, posing significant challenges for large-scale applications. Therefore, developing an efficient OER electrocatalyst for proton exchange membrane (PEM) water electrolyzers remains a significant challenge. Here, we present a bottom-up synthesis strategy utilizing ultrasound-assisted exfoliation to design nickel–iron bimetallic organic framework (NiFe-MOF) nanosheets with high electrooxidation activity, in situ induced by carbon quantum dots (CQDs). This approach eliminates the reliance on intricate and inefficient exfoliation techniques, producing NiFe-MOF nanosheets with a regulated thickness of just 10 nm. This enhanced electron transport induced by CQDs plays a pivotal role in improving the OER performance of NiFe-MOF, achieving a current density of 10 mA cm−2 with an overpotential of only 280 mV, with a Tafel slope of 71.98 mV dec−1, lower Rct, and larger ECSA. In situ FTIR spectroscopy suggests that the OER mechanism in NiFe-MOF-CQD mainly follows the adsorbate evolution mechanism. The NiFe-MOF-CQD catalyst demonstrates remarkable durability and resilience during PEM water electrolysis, reaching industrially relevant current densities of 2 A cm−2 at 2 V. This research's results not only promote green and low-carbon development but also inject new vitality into the development of hydrogen energy technologies.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳量子点介导的二元金属有机框架纳米片在质子交换膜电解槽中以安培级电流密度实现高效氧气进化
由于贵金属催化剂的稀有性和高昂的费用,氧气进化反应(OER)催化剂的广泛使用受到了阻碍,给大规模应用带来了巨大挑战。因此,为质子交换膜(PEM)水电解槽开发高效的氧进化反应电催化剂仍然是一项重大挑战。在此,我们提出了一种自下而上的合成策略,利用超声辅助剥离法设计出具有高电解氧化活性的镍铁双金属有机框架(NiFe-MOF)纳米片,并由碳量子点(CQDs)原位诱导。这种方法无需依赖复杂而低效的剥离技术,生产出的镍铁合金有机框架纳米片的规定厚度仅为 10 纳米。由 CQDs 引发的电子传输增强在提高 NiFe-MOF 的 OER 性能方面发挥了关键作用,使电流密度达到 10 mA cm-2,过电位仅为 280 mV,Tafel 斜率为 71.98 mV dec-1,Rct 更低,ECSA 更大。原位傅立叶变换红外光谱表明,NiFe-MOF-CQD 的 OER 机制主要遵循吸附剂演化机制。在 PEM 水电解过程中,NiFe-MOF-CQD 催化剂表现出了卓越的耐久性和弹性,在 2 V 电压下的电流密度达到了 2 A cm-2,达到了工业相关标准。该研究成果不仅促进了绿色低碳发展,也为氢能技术的发展注入了新的活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Construction of sp-C~O-V Interface for Selective Conversion of Methane to Methyl Hydroperoxide Under Mild Conditions Ultralight porous carbon scaffold for anode-free lithium metal batteries Advancements and challenges in g-C3N4/ZnIn2S4 heterojunction photocatalysts Lightweight Al-Mg-In Alloy Based Seawater Batteries for Long Endurance Applications: Pack Mass and Cost Optimization Carbon quantum dots (CQDs) modified-CuZn bimetallic catalyst for efficient electrocatalytic CO2 reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1