Ambient-condition acetylene hydrogenation to ethylene over WS2-confined atomic Pd sites

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-01 DOI:10.1038/s41467-024-53481-1
Wangwang Zhang, Kelechi Uwakwe, Jingting Hu, Yan Wei, Juntong Zhu, Wu Zhou, Chao Ma, Liang Yu, Rui Huang, Dehui Deng
{"title":"Ambient-condition acetylene hydrogenation to ethylene over WS2-confined atomic Pd sites","authors":"Wangwang Zhang, Kelechi Uwakwe, Jingting Hu, Yan Wei, Juntong Zhu, Wu Zhou, Chao Ma, Liang Yu, Rui Huang, Dehui Deng","doi":"10.1038/s41467-024-53481-1","DOIUrl":null,"url":null,"abstract":"<p>Ambient-condition acetylene hydrogenation to ethylene (AC-AHE) is a promising process for ethylene production with minimal additional energy input, yet remains a great challenge due to the difficulty in the coactivation of acetylene and H<sub>2</sub> at room temperature. Herein, we report a highly efficient AC-AHE process over robust sulfur-confined atomic Pd species on tungsten sulfide surface. The catalyst exhibits over 99% acetylene conversion with a high ethylene selectivity of 70% at 25 <sup>o</sup>C, and a record space-time yield of ethylene of 1123 mol<sub>C2H4</sub> mol<sub>Pd</sub><sup>−1</sup> h<sup>−1</sup> under ambient conditions, which is nearly four times that of the typical Pd<sub>1</sub>Ag<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst, and exhibiting superior stability of over 500 h. We demonstrate that the confinement of Pd-S coordination induces positively-charged atomic Pd<sup>δ+</sup>, which not only facilitates C<sub>2</sub>H<sub>2</sub> hydrogenation but also promotes C<sub>2</sub>H<sub>4</sub> desorption, thereby enabling a high conversion of C<sub>2</sub>H<sub>2</sub> to C<sub>2</sub>H<sub>4</sub> at room temperature while suppressing over-hydrogenation to C<sub>2</sub>H<sub>6</sub>.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53481-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ambient-condition acetylene hydrogenation to ethylene (AC-AHE) is a promising process for ethylene production with minimal additional energy input, yet remains a great challenge due to the difficulty in the coactivation of acetylene and H2 at room temperature. Herein, we report a highly efficient AC-AHE process over robust sulfur-confined atomic Pd species on tungsten sulfide surface. The catalyst exhibits over 99% acetylene conversion with a high ethylene selectivity of 70% at 25 oC, and a record space-time yield of ethylene of 1123 molC2H4 molPd−1 h−1 under ambient conditions, which is nearly four times that of the typical Pd1Ag3/Al2O3 catalyst, and exhibiting superior stability of over 500 h. We demonstrate that the confinement of Pd-S coordination induces positively-charged atomic Pdδ+, which not only facilitates C2H2 hydrogenation but also promotes C2H4 desorption, thereby enabling a high conversion of C2H2 to C2H4 at room temperature while suppressing over-hydrogenation to C2H6.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 WS2 封闭原子钯位点上进行乙炔加氢制乙烯的环境条件研究
环境条件下乙炔加氢制乙烯(AC-AHE)是一种前景广阔的乙烯生产工艺,只需极少的额外能量输入,但由于乙炔和 H2 在室温下难以共同活化,该工艺仍面临巨大挑战。在此,我们报告了一种在硫化钨表面的强硫封闭原子钯物种上的高效 AC-AHE 工艺。该催化剂在 25 oC 时乙炔转化率超过 99%,乙烯选择性高达 70%,在环境条件下乙烯的时空产率达到创纪录的 1123 molC2H4 molPd-1 h-1,几乎是典型 Pd1Ag3/Al2O3 催化剂的四倍,并表现出超过 500 h 的卓越稳定性。我们证明,Pd-S 配位的限制诱导了带正电荷的原子 Pdδ+,这不仅有利于 C2H2 加氢,还能促进 C2H4 解吸,从而在室温下实现 C2H2 向 C2H4 的高转化率,同时抑制向 C2H6 的过度加氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
High-performance photon-driven DC motor system The Arabidopsis receptor-like kinase WAKL4 limits cadmium uptake via phosphorylation and degradation of NRAMP1 transporter Unveiling the autocatalytic growth of Li2S crystals at the solid-liquid interface in lithium-sulfur batteries A Catalogue of Structural Variation across Ancestrally Diverse Asian Genomes A single-photon emitter coupled to a phononic-crystal resonator in the resolved-sideband regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1