Mechanism Analysis and Process Optimization for Extraction Distillation of Alcohol-Ester Azeotrope Using Ionic Liquid

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-11-01 DOI:10.1021/acssuschemeng.4c07089
Ruoyu Hu, Wenli Liu, Yu Wang, Zhaoyou Zhu, Yinglong Wang, Jingwei Yang, Jianguang Qi
{"title":"Mechanism Analysis and Process Optimization for Extraction Distillation of Alcohol-Ester Azeotrope Using Ionic Liquid","authors":"Ruoyu Hu, Wenli Liu, Yu Wang, Zhaoyou Zhu, Yinglong Wang, Jingwei Yang, Jianguang Qi","doi":"10.1021/acssuschemeng.4c07089","DOIUrl":null,"url":null,"abstract":"In propyl propionate production, methanol-methyl propionate azeotropes form at the column top, complicating conventional distillation separation. This work explores the process of extraction distillation for separating methanol-methyl propionate azeotropes using ionic liquids (ILs) from three aspects: molecular structure information, separation feasibility, and clean process design and optimization. In terms of molecular structure information, the separation ability of 27 cations and 28 anions for methanol-methyl propionate azeotropes is investigated using density functional theory, evaluating the value size, bonding type, and strength both quantitatively and qualitatively. In terms of separation feasibility, COSMOthermX software predicts the vapor–liquid equilibrium data of methanol-methyl propionate-ILs at 101.3 kPa, exploring the effects of IL concentration and type on alcohol/ester azeotrope separation, at the same time, the prediction results and performance were verified by experiments. In terms of process design and optimization, simulation processes for using ILs to separate alcohol/ester azeotropes have been established. The final product purity reaches over 99.99%, with a maximum reduction of 16.08% and 33.84% in total annual costs and gas emissions.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"112 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c07089","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In propyl propionate production, methanol-methyl propionate azeotropes form at the column top, complicating conventional distillation separation. This work explores the process of extraction distillation for separating methanol-methyl propionate azeotropes using ionic liquids (ILs) from three aspects: molecular structure information, separation feasibility, and clean process design and optimization. In terms of molecular structure information, the separation ability of 27 cations and 28 anions for methanol-methyl propionate azeotropes is investigated using density functional theory, evaluating the value size, bonding type, and strength both quantitatively and qualitatively. In terms of separation feasibility, COSMOthermX software predicts the vapor–liquid equilibrium data of methanol-methyl propionate-ILs at 101.3 kPa, exploring the effects of IL concentration and type on alcohol/ester azeotrope separation, at the same time, the prediction results and performance were verified by experiments. In terms of process design and optimization, simulation processes for using ILs to separate alcohol/ester azeotropes have been established. The final product purity reaches over 99.99%, with a maximum reduction of 16.08% and 33.84% in total annual costs and gas emissions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用离子液体进行醇酯共沸物萃取蒸馏的机理分析和工艺优化
在丙酸丙酯生产过程中,甲醇-丙酸甲酯共沸物会在塔顶形成,使传统的蒸馏分离变得复杂。本研究从分子结构信息、分离可行性和清洁工艺设计与优化三个方面探讨了利用离子液体(ILs)萃取蒸馏分离甲醇-丙酸甲酯共沸物的工艺。在分子结构信息方面,利用密度泛函理论研究了 27 种阳离子和 28 种阴离子对甲醇-丙酸甲酯共沸物的分离能力,定量和定性地评估了其数值大小、键合类型和强度。在分离可行性方面,COSMOthermX 软件预测了甲醇-丙酸甲酯-ILs 在 101.3 kPa 下的汽液平衡数据,探讨了 IL 浓度和类型对醇酯共沸物分离的影响,同时通过实验验证了预测结果和性能。在工艺设计和优化方面,建立了利用 IL 分离醇/酯共沸物的模拟工艺。最终产品纯度达到 99.99% 以上,年总成本和气体排放量最大分别降低了 16.08% 和 33.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Highly Stable Composite Phase-Change Materials Reinforced by Silica Aerogels and Cellulose Nanocrystals for Enhanced Thermal Insulation and Durable Isoperibolic Application Subnano Polyhydroxylated C60 and Co-oxo Clusters Enable Accelerated Electron Kinetics for CO2 Photoreduction in Pure Water Obtaining the High Valence of Ni/Fe Sites in a Heterostructure Induced by Implanting the NiFe-DTO MOF as a Highly Active OER Catalyst Enzyme-Friendly Solvent for One-Pot Chemobiocatalytic Valorization of Fructose into Valuable Furanics via 5-Hydroxymethylfurfural Simulation-Driven Design and Synthesis of DES-PDMS Membranes for Enhanced Ethanol Pervaporation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1