{"title":"Learning Cross-Attention Point Transformer With Global Porous Sampling","authors":"Yueqi Duan;Haowen Sun;Juncheng Yan;Jiwen Lu;Jie Zhou","doi":"10.1109/TIP.2024.3486612","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a point-based cross-attention transformer named CrossPoints with parametric Global Porous Sampling (GPS) strategy. The attention module is crucial to capture the correlations between different tokens for transformers. Most existing point-based transformers design multi-scale self-attention operations with down-sampled point clouds by the widely-used Farthest Point Sampling (FPS) strategy. However, FPS only generates sub-clouds with holistic structures, which fails to fully exploit the flexibility of points to generate diversified tokens for the attention module. To address this, we design a cross-attention module with parametric GPS and Complementary GPS (C-GPS) strategies to generate series of diversified tokens through controllable parameters. We show that FPS is a degenerated case of GPS, and the network learns more abundant relational information of the structure and geometry when we perform consecutive cross-attention over the tokens generated by GPS as well as C-GPS sampled points. More specifically, we set evenly-sampled points as queries and design our cross-attention layers with GPS and C-GPS sampled points as keys and values. In order to further improve the diversity of tokens, we design a deformable operation over points to adaptively adjust the points according to the input. Extensive experimental results on both shape classification and indoor scene segmentation tasks indicate promising boosts over the recent point cloud transformers. We also conduct ablation studies to show the effectiveness of our proposed cross-attention module with GPS strategy.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6283-6297"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10740603/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a point-based cross-attention transformer named CrossPoints with parametric Global Porous Sampling (GPS) strategy. The attention module is crucial to capture the correlations between different tokens for transformers. Most existing point-based transformers design multi-scale self-attention operations with down-sampled point clouds by the widely-used Farthest Point Sampling (FPS) strategy. However, FPS only generates sub-clouds with holistic structures, which fails to fully exploit the flexibility of points to generate diversified tokens for the attention module. To address this, we design a cross-attention module with parametric GPS and Complementary GPS (C-GPS) strategies to generate series of diversified tokens through controllable parameters. We show that FPS is a degenerated case of GPS, and the network learns more abundant relational information of the structure and geometry when we perform consecutive cross-attention over the tokens generated by GPS as well as C-GPS sampled points. More specifically, we set evenly-sampled points as queries and design our cross-attention layers with GPS and C-GPS sampled points as keys and values. In order to further improve the diversity of tokens, we design a deformable operation over points to adaptively adjust the points according to the input. Extensive experimental results on both shape classification and indoor scene segmentation tasks indicate promising boosts over the recent point cloud transformers. We also conduct ablation studies to show the effectiveness of our proposed cross-attention module with GPS strategy.