{"title":"Steady-State Drug Exposure of Repeated IV Bolus Administration for a One Compartment Pharmacokinetic Model with Sigmoidal Hill Elimination.","authors":"Meizhu Cao, Xiaotian Wu, Jun Li","doi":"10.1007/s11538-024-01375-0","DOIUrl":null,"url":null,"abstract":"<p><p>Drugs exhibiting nonlinear pharmacokinetics hold significant importance in drug research and development. However, evaluating drug exposure accurately is challenging with the current formulae established for linear pharmacokinetics. This article aims to investigate the steady-state drug exposure for a one-compartment pharmacokinetic (PK) model with sigmoidal Hill elimination, focusing on three key topics: the comparison between steady-state drug exposure of repeated intravenous (IV) bolus ( <math><msub><mtext>AUC</mtext> <mrow><mi>ss</mi></mrow> </msub> </math> ) and total drug exposure after a single IV bolus ( <math><msub><mtext>AUC</mtext> <mrow><mn>0</mn> <mo>-</mo> <mi>∞</mi></mrow> </msub> </math> ); the evolution of steady-state drug concentration with varying dosing frequencies; and the control of drug pharmacokinetics in multiple-dose therapeutic scenarios. For the first topic, we established conditions for the existence of <math><msub><mtext>AUC</mtext> <mrow><mi>ss</mi></mrow> </msub> </math> , derived an explicit formula for its calculation, and compared it with <math><msub><mtext>AUC</mtext> <mrow><mn>0</mn> <mo>-</mo> <mi>∞</mi></mrow> </msub> </math> . For the second, we identified the trending properties of steady-state average and trough concentrations concerning dosing frequency. For the third, we developed formulae to compute dose and dosing time for both regular and irregular dosing scenarios. As an example, our findings were applied to a real drug model of progesterone used in lactating dairy cows. In conclusion, these results provide a theoretical foundation for designing rational dosage regimens and conducting therapeutic trials.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 12","pages":"143"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01375-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drugs exhibiting nonlinear pharmacokinetics hold significant importance in drug research and development. However, evaluating drug exposure accurately is challenging with the current formulae established for linear pharmacokinetics. This article aims to investigate the steady-state drug exposure for a one-compartment pharmacokinetic (PK) model with sigmoidal Hill elimination, focusing on three key topics: the comparison between steady-state drug exposure of repeated intravenous (IV) bolus ( ) and total drug exposure after a single IV bolus ( ); the evolution of steady-state drug concentration with varying dosing frequencies; and the control of drug pharmacokinetics in multiple-dose therapeutic scenarios. For the first topic, we established conditions for the existence of , derived an explicit formula for its calculation, and compared it with . For the second, we identified the trending properties of steady-state average and trough concentrations concerning dosing frequency. For the third, we developed formulae to compute dose and dosing time for both regular and irregular dosing scenarios. As an example, our findings were applied to a real drug model of progesterone used in lactating dairy cows. In conclusion, these results provide a theoretical foundation for designing rational dosage regimens and conducting therapeutic trials.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.