Greta Bernardo , Miguel A. Prado , Anna Roshani Dashtmian , Mariavittoria Favaro , Sofia Mauri , Alice Borsetto , Elena Marchesan , Joao A. Paulo , Steve P. Gygi , Daniel J. Finley , Elena Ziviani
{"title":"USP14 inhibition enhances Parkin-independent mitophagy in iNeurons","authors":"Greta Bernardo , Miguel A. Prado , Anna Roshani Dashtmian , Mariavittoria Favaro , Sofia Mauri , Alice Borsetto , Elena Marchesan , Joao A. Paulo , Steve P. Gygi , Daniel J. Finley , Elena Ziviani","doi":"10.1016/j.phrs.2024.107484","DOIUrl":null,"url":null,"abstract":"<div><div>Loss of proteostasis is well documented during physiological aging and depends on the progressive decline in the activity of two major degradative mechanisms: the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway. This decline in proteostasis is exacerbated in age-associated neurodegenerative diseases, such as Parkinson’s Disease (PD). In PD, patients develop an accumulation of aggregated proteins and dysfunctional mitochondria, which leads to ROS production, neuroinflammation and neurodegeneration. We recently reported that inhibition of the deubiquitinating enzyme USP14, which is known to enhance both the UPS and autophagy, increases lifespan and rescues the pathological phenotype of two <em>Drosophila</em> models of PD. Studies on the effects of USP14 inhibition in mammalian neurons have not yet been conducted. To close this gap, we exploited iNeurons differentiated from human embryonic stem cells (hESCs), and investigated the effect of inhibiting USP14 in these cultured neurons. Quantitative global proteomics analysis performed following genetic ablation or pharmacological inhibition of USP14 demonstrated that USP14 loss of function specifically promotes mitochondrial autophagy in iNeurons. Biochemical and imaging data also showed that USP14 inhibition enhances mitophagy. The mitophagic effect of USP14 inhibition proved to be PINK1/Parkin- independent, instead relying on expression of the mitochondrial E3 Ubiquitin Ligase MITOL/MARCH5. Notably, USP14 inhibition normalized the mitochondrial defects of Parkin KO human neurons.</div></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":"210 ","pages":"Article 107484"},"PeriodicalIF":9.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661824004298","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Loss of proteostasis is well documented during physiological aging and depends on the progressive decline in the activity of two major degradative mechanisms: the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway. This decline in proteostasis is exacerbated in age-associated neurodegenerative diseases, such as Parkinson’s Disease (PD). In PD, patients develop an accumulation of aggregated proteins and dysfunctional mitochondria, which leads to ROS production, neuroinflammation and neurodegeneration. We recently reported that inhibition of the deubiquitinating enzyme USP14, which is known to enhance both the UPS and autophagy, increases lifespan and rescues the pathological phenotype of two Drosophila models of PD. Studies on the effects of USP14 inhibition in mammalian neurons have not yet been conducted. To close this gap, we exploited iNeurons differentiated from human embryonic stem cells (hESCs), and investigated the effect of inhibiting USP14 in these cultured neurons. Quantitative global proteomics analysis performed following genetic ablation or pharmacological inhibition of USP14 demonstrated that USP14 loss of function specifically promotes mitochondrial autophagy in iNeurons. Biochemical and imaging data also showed that USP14 inhibition enhances mitophagy. The mitophagic effect of USP14 inhibition proved to be PINK1/Parkin- independent, instead relying on expression of the mitochondrial E3 Ubiquitin Ligase MITOL/MARCH5. Notably, USP14 inhibition normalized the mitochondrial defects of Parkin KO human neurons.
期刊介绍:
Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.