Aiyuan Zhou, Xiyan Zhang, Xinyue Hu, Tiao Li, Wenzhong Peng, Hang Yang, Dingding Deng, Chunheng Mo, Rongli Lu, Pinhua Pan
{"title":"Loss of interferon regulatory factor-1 prevents lung fibrosis by upregulation of pon1 expression.","authors":"Aiyuan Zhou, Xiyan Zhang, Xinyue Hu, Tiao Li, Wenzhong Peng, Hang Yang, Dingding Deng, Chunheng Mo, Rongli Lu, Pinhua Pan","doi":"10.1186/s12931-024-02987-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Interferon regulatory factor-1 (IRF1) is a transcription factor that plays a significant role in various biological processes, including inflammatory injury, viral infection, cell death, and immune responses, and it has been extensively studied in the context of different lung diseases. However, the mechanism underlying its involvement in lung fibrosis remains largely unknown.</p><p><strong>Methods: </strong>Wild type (WT) mice, IRF1 global-null mice (Irf1<sup>-/-</sup>) were subjected to a bleomycin-induced lung fibrosis model to enable examination of the role of IRF1 in lung fibrosis. Proteomic analysis of lung tissue from WT and Irf1<sup>-/-</sup> mice treated with saline or bleomycin was performed to explore the mechanism of IRF1 in regulating lung fibrosis.</p><p><strong>Results: </strong>In the bleomycin-induced fibrosis mouse model, increased expression of IRF1 was observed. Irf1 knockout mice displayed decreased lung fibrosis relative to WT mice following treatment with bleomycin. The protein expression of fibronectin, as assessed by the Western blot analysis of lung tissues, was downregulated in Irf1<sup>-/-</sup> mice. We observed a similar reduction in collagen content using hydroxyproline detection. Histologically, there was less collagen deposition in the lungs of Irf1<sup>-/-</sup> mice compared with WT mice. Proteomics data revealed that IRF1 may be involved in lung fibrosis via the regulation of ferroptosis. We determined that paraoxonase 1(PON1), a poorly characterized protein in lung fibrosis, was upregulated in Irf1<sup>-/-</sup> mice following exposure to bleomycin. In vitro experiments revealed that IRF1 could regulate the level of GSH and MDA through PON1. We also determined that PON1 levels were lower in the plasma of IPF patients compared with healthy controls.</p><p><strong>Conclusion: </strong>Our data highlight the importance of IRF1 in the fibrotic process, and PON1 may be a potential mediator of IRF1 in the progression of lung fibrosis.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-024-02987-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Interferon regulatory factor-1 (IRF1) is a transcription factor that plays a significant role in various biological processes, including inflammatory injury, viral infection, cell death, and immune responses, and it has been extensively studied in the context of different lung diseases. However, the mechanism underlying its involvement in lung fibrosis remains largely unknown.
Methods: Wild type (WT) mice, IRF1 global-null mice (Irf1-/-) were subjected to a bleomycin-induced lung fibrosis model to enable examination of the role of IRF1 in lung fibrosis. Proteomic analysis of lung tissue from WT and Irf1-/- mice treated with saline or bleomycin was performed to explore the mechanism of IRF1 in regulating lung fibrosis.
Results: In the bleomycin-induced fibrosis mouse model, increased expression of IRF1 was observed. Irf1 knockout mice displayed decreased lung fibrosis relative to WT mice following treatment with bleomycin. The protein expression of fibronectin, as assessed by the Western blot analysis of lung tissues, was downregulated in Irf1-/- mice. We observed a similar reduction in collagen content using hydroxyproline detection. Histologically, there was less collagen deposition in the lungs of Irf1-/- mice compared with WT mice. Proteomics data revealed that IRF1 may be involved in lung fibrosis via the regulation of ferroptosis. We determined that paraoxonase 1(PON1), a poorly characterized protein in lung fibrosis, was upregulated in Irf1-/- mice following exposure to bleomycin. In vitro experiments revealed that IRF1 could regulate the level of GSH and MDA through PON1. We also determined that PON1 levels were lower in the plasma of IPF patients compared with healthy controls.
Conclusion: Our data highlight the importance of IRF1 in the fibrotic process, and PON1 may be a potential mediator of IRF1 in the progression of lung fibrosis.
期刊介绍:
Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases.
As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion.
Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.