{"title":"Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth","authors":"Christopher Hobbs, Johana Kulhánková, Barbora Nikendey Holubová, Andrii Mahun, Libor Kobera, Jakub Erben, Věra Hedvičáková, Šárka Hauzerová, Miroslava Rysová, Veronika Máková","doi":"10.1007/s10853-024-10324-0","DOIUrl":null,"url":null,"abstract":"<div><p>Hybrid organic–inorganic nanomaterials made of various types of organosilanes display very promising applications in a variety of fields, including biocompatible materials. Currently, these types of nanomaterials are studied in various physical forms due to the tunable combination of organic and inorganic parts bringing numerous properties into the field of medicine. Particularly, in the field of regenerative medicine, nanofibrous organosilane scaffolds are under wide investigation due to their morphological similarity to the extracellular matrix. Here, we describe the economically and procedurally simple synthesis and successful preparation of pure organosilane nanofibres (NFs) using only an <i>N</i>,<i>N</i>´-bis(3-(triethoxysilyl)propyl)oxamide precursor via a one-pot synthesis process utilising the acid-catalysed sol–gel process. Unlike established practices, the organosilane scaffolds proposed in this work are prepared thanks to the conscious and precise setting of the sol–gel process parameters without the need for any potentially harmful additives such as co-polymers, surfactants, and/or alkoxides. In addition, the synthesis of the precursor (BTPO) contains silicates for the polymerisation and a simple organic alkyl linker with amide bonds being akin to the biological friendly peptide bond. BTPO NFs were successfully electrospun on a large scale using a Nanospider™ and fully characterised and analysed for cytocompatibility using 3T3 fibroblasts. Formed organosilane NFs displaying negligible cytotoxicity, along with good cell proliferation and metabolic activity, open up the possibility of introducing various organic structures, using the synthetic strategies presented here, for inherent functional properties which could be exploited further in tissue engineering.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 41","pages":"19612 - 19627"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10324-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid organic–inorganic nanomaterials made of various types of organosilanes display very promising applications in a variety of fields, including biocompatible materials. Currently, these types of nanomaterials are studied in various physical forms due to the tunable combination of organic and inorganic parts bringing numerous properties into the field of medicine. Particularly, in the field of regenerative medicine, nanofibrous organosilane scaffolds are under wide investigation due to their morphological similarity to the extracellular matrix. Here, we describe the economically and procedurally simple synthesis and successful preparation of pure organosilane nanofibres (NFs) using only an N,N´-bis(3-(triethoxysilyl)propyl)oxamide precursor via a one-pot synthesis process utilising the acid-catalysed sol–gel process. Unlike established practices, the organosilane scaffolds proposed in this work are prepared thanks to the conscious and precise setting of the sol–gel process parameters without the need for any potentially harmful additives such as co-polymers, surfactants, and/or alkoxides. In addition, the synthesis of the precursor (BTPO) contains silicates for the polymerisation and a simple organic alkyl linker with amide bonds being akin to the biological friendly peptide bond. BTPO NFs were successfully electrospun on a large scale using a Nanospider™ and fully characterised and analysed for cytocompatibility using 3T3 fibroblasts. Formed organosilane NFs displaying negligible cytotoxicity, along with good cell proliferation and metabolic activity, open up the possibility of introducing various organic structures, using the synthetic strategies presented here, for inherent functional properties which could be exploited further in tissue engineering.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.