M. R. Salehi Kolahi, H. Moeinkhah, H. Rahmani, A. Mohammadzadeh
{"title":"Dynamic modeling and Multi-Objective Optimization of a 3DOF Reconfigurable Parallel Robot","authors":"M. R. Salehi Kolahi, H. Moeinkhah, H. Rahmani, A. Mohammadzadeh","doi":"10.1134/S0025654424603483","DOIUrl":null,"url":null,"abstract":"<p>The reconfigurable parallel robots are highly adaptable to different tasks and environments, making them suitable for a wide range of industrial and medical applications. Optimizing the geometrical and structural parameters is a crucial aspect of designing a parallel robot. However, due to different degrees of freedom and workspaces, the optimization of reconfigurable parallel robots is a challenge. This paper presents the design, unified dynamic modeling and multi-objective optimization methodology of an innovative 3UPS-PU/S robot. This parallel robot can be reconfigured from a Tricept mechanism into a fully spherical mechanism through the reconfiguration of the PU/S central passive limb. For this purpose, the unified dynamic model of the robot is derived. With respect to workspace, manipulability and dynamic dexterity, three performance indices are considered as the objective functions. The robot is optimized with respect to the design and geometrical constraints using the non-dominated sorting genetic algorithm II (NSGA-II), which is used to find the Pareto fronts. The obtained solutions are a set of optimal geometric parameters to adjust the kinematic and dynamic performances. The results depict that the process effectively identified a 3UPS-PU/S robot with an efficient dexterous workspace. Also, based on the optimization results a prototype of the robot was fabricated. Overall, this paper provides a novel framework for the multi-objective optimization of reconfigurable parallel robots.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424603483","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The reconfigurable parallel robots are highly adaptable to different tasks and environments, making them suitable for a wide range of industrial and medical applications. Optimizing the geometrical and structural parameters is a crucial aspect of designing a parallel robot. However, due to different degrees of freedom and workspaces, the optimization of reconfigurable parallel robots is a challenge. This paper presents the design, unified dynamic modeling and multi-objective optimization methodology of an innovative 3UPS-PU/S robot. This parallel robot can be reconfigured from a Tricept mechanism into a fully spherical mechanism through the reconfiguration of the PU/S central passive limb. For this purpose, the unified dynamic model of the robot is derived. With respect to workspace, manipulability and dynamic dexterity, three performance indices are considered as the objective functions. The robot is optimized with respect to the design and geometrical constraints using the non-dominated sorting genetic algorithm II (NSGA-II), which is used to find the Pareto fronts. The obtained solutions are a set of optimal geometric parameters to adjust the kinematic and dynamic performances. The results depict that the process effectively identified a 3UPS-PU/S robot with an efficient dexterous workspace. Also, based on the optimization results a prototype of the robot was fabricated. Overall, this paper provides a novel framework for the multi-objective optimization of reconfigurable parallel robots.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.