{"title":"Optimizing mix design methods for using slag, ceramic, and glass waste powders in eco-friendly geopolymer mortars","authors":"Mohamed Aimen Boulebnane, Ahmed Abderraouf Belkadi, Kamel Boudeghdegh, Tarek Chiker, Amirouche Berkouche, Lysa Benaddache, Annelise Cousture, Salima Aggoun","doi":"10.1007/s43452-024-01077-3","DOIUrl":null,"url":null,"abstract":"<div><p>Faced with the urgent need to develop environmentally friendly alternatives to cementitious materials, geopolymers, made from combinations of various by-products, offer a promising solution. In recent years, statistical optimization methods have begun to be applied in the field of engineering. This study focuses on sustainable geopolymer mortars by incorporating industrial by-product powders, specifically blast furnace slag (SP), waste glass powder (GP), and ceramic powder (CP) as partial replacements. Compressive strength, flexural strength, workability, and density were evaluated for various ternary compositions using a Mix Design Model (MDM) approach. The main results revealed a synergistic interaction between SP and CP, with a 20% replacement of CP leading to a 16% increase in compressive strength, indicating optimal performance. Microstructural analysis using SEM, TGA, and FTIR highlighted a dense, crack-free matrix with extensive calcium aluminosilicate gel phases, particularly in the SP–CP mixture. Optimization through desirability profiling identified a 30% CP replacement as ideal for maximizing strength and workability. Controlled optimization of multi-component geopolymer synthesis using by-products streams proves to be a promising method for developing next-generation sustainable construction materials.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01077-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Faced with the urgent need to develop environmentally friendly alternatives to cementitious materials, geopolymers, made from combinations of various by-products, offer a promising solution. In recent years, statistical optimization methods have begun to be applied in the field of engineering. This study focuses on sustainable geopolymer mortars by incorporating industrial by-product powders, specifically blast furnace slag (SP), waste glass powder (GP), and ceramic powder (CP) as partial replacements. Compressive strength, flexural strength, workability, and density were evaluated for various ternary compositions using a Mix Design Model (MDM) approach. The main results revealed a synergistic interaction between SP and CP, with a 20% replacement of CP leading to a 16% increase in compressive strength, indicating optimal performance. Microstructural analysis using SEM, TGA, and FTIR highlighted a dense, crack-free matrix with extensive calcium aluminosilicate gel phases, particularly in the SP–CP mixture. Optimization through desirability profiling identified a 30% CP replacement as ideal for maximizing strength and workability. Controlled optimization of multi-component geopolymer synthesis using by-products streams proves to be a promising method for developing next-generation sustainable construction materials.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.