Deep Learning Enhanced in Situ Atomic Imaging of Ion Migration at Crystalline-Amorphous Interfaces.

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-11-13 Epub Date: 2024-11-04 DOI:10.1021/acs.nanolett.4c04472
Weikang Dong, Yi-Chi Wang, Chen Yang, Chunhao Sun, Hesong Li, Ze Hua, Ziqi Wu, Xiaoxue Chang, Lixia Bao, Shuangquan Qu, Xintao Zuo, Wen Yang, Jing Lu, Ying Fu, Jiafang Li, Lixin Dong, Ruiwen Shao
{"title":"Deep Learning Enhanced in Situ Atomic Imaging of Ion Migration at Crystalline-Amorphous Interfaces.","authors":"Weikang Dong, Yi-Chi Wang, Chen Yang, Chunhao Sun, Hesong Li, Ze Hua, Ziqi Wu, Xiaoxue Chang, Lixia Bao, Shuangquan Qu, Xintao Zuo, Wen Yang, Jing Lu, Ying Fu, Jiafang Li, Lixin Dong, Ruiwen Shao","doi":"10.1021/acs.nanolett.4c04472","DOIUrl":null,"url":null,"abstract":"<p><p>Improving the performance of energy storage, neuromorphic computing, and more applications requires an in-depth understanding of ion transport at interfaces, which are often hindered by facile atomic reconfiguration at working conditions and limited characterization capability. Here, we construct an in situ double-tilt electric manipulator inside an aberration-corrected scanning transmission electron microscope. Coupled with deep learning-based image enhancement, atomic images are enhanced 3-fold compared to traditional methods to observe the potassium ion migration and microstructure evolution at the crystalline-amorphous interface in antimony selenide. Potassium ions form stable anisotropic insertion sites outside the (Sb<sub>4</sub>Se<sub>6</sub>) chain, with a few potassium ions present within the moieties. Combined experiments and density functional theory calculations reveal a reaction pathway of forming a novel metastable state during potassium ion insertion, followed by recovery and unexpected chirality changes at the interface upon potassium ion extraction. Our unique methodology paves the way for facilitating the improvement and rational design of nanostructured materials.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04472","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the performance of energy storage, neuromorphic computing, and more applications requires an in-depth understanding of ion transport at interfaces, which are often hindered by facile atomic reconfiguration at working conditions and limited characterization capability. Here, we construct an in situ double-tilt electric manipulator inside an aberration-corrected scanning transmission electron microscope. Coupled with deep learning-based image enhancement, atomic images are enhanced 3-fold compared to traditional methods to observe the potassium ion migration and microstructure evolution at the crystalline-amorphous interface in antimony selenide. Potassium ions form stable anisotropic insertion sites outside the (Sb4Se6) chain, with a few potassium ions present within the moieties. Combined experiments and density functional theory calculations reveal a reaction pathway of forming a novel metastable state during potassium ion insertion, followed by recovery and unexpected chirality changes at the interface upon potassium ion extraction. Our unique methodology paves the way for facilitating the improvement and rational design of nanostructured materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶体-非晶体界面离子迁移的深度学习增强型原位原子成像。
要提高能量存储、神经形态计算以及更多应用的性能,就必须深入了解界面上的离子传输,而这往往受到工作条件下原子容易重新配置以及表征能力有限的阻碍。在这里,我们在畸变校正扫描透射电子显微镜内构建了一个原位双倾斜电动操纵器。结合基于深度学习的图像增强技术,原子图像比传统方法增强了 3 倍,从而观察到硒化锑晶体-非晶界面上的钾离子迁移和微观结构演变。钾离子在 (Sb4Se6) 链外形成稳定的各向异性插入位点,在分子内存在少量钾离子。实验和密度泛函理论计算相结合,揭示了在钾离子插入过程中形成一种新的瞬态的反应途径,随后在钾离子被抽出时,界面上的瞬态会恢复并发生意想不到的手性变化。我们的独特方法为改进和合理设计纳米结构材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1