Federico Parenti, Riccardo Sargeni, Elisabetta Dimaggio, Francesco Pieri, Filippo Fabbri, Tommaso Losi, Fabrizio Antonio Viola, Arindam Bala, Zhenyu Wang, Andras Kis, Mario Caironi, Gianluca Fiori
{"title":"Ultrathin Transistors and Circuits for Conformable Electronics.","authors":"Federico Parenti, Riccardo Sargeni, Elisabetta Dimaggio, Francesco Pieri, Filippo Fabbri, Tommaso Losi, Fabrizio Antonio Viola, Arindam Bala, Zhenyu Wang, Andras Kis, Mario Caironi, Gianluca Fiori","doi":"10.1021/acs.nanolett.4c04930","DOIUrl":null,"url":null,"abstract":"<p><p>Adapting electronics to perfectly conform to nonplanar and rough surfaces, such as human skin, is a challenging task, which could open up new applications in fields of high economic and scientific interest, ranging from health to robotics, human-machine interface, and Internet of Things. The key to success lies in defining a technology that can lead to ultrathin devices, exploiting ultimately thin materials, with high mechanical flexibility and excellent electrical properties. Here, we report a hybrid approach for the development of high-performance, ultrathin and conformable electronic devices, based on the integration of semiconducting transition metal dichalcogenides, i.e., MoS<sub>2</sub>, with organic gate dielectric material, i.e., polyvinyl formal (PVF) combined with inkjet printed PEDOT:PSS electrodes. Through this novel approach, transistors and simple digital and analogue circuits are fabricated by a sequential stacking of ultrathin (nanometer) layers on a few micrometers thick polyimide substrate, which guarantees the high flexibility mandatory for the targeted applications.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"15870-15877"},"PeriodicalIF":9.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04930","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Adapting electronics to perfectly conform to nonplanar and rough surfaces, such as human skin, is a challenging task, which could open up new applications in fields of high economic and scientific interest, ranging from health to robotics, human-machine interface, and Internet of Things. The key to success lies in defining a technology that can lead to ultrathin devices, exploiting ultimately thin materials, with high mechanical flexibility and excellent electrical properties. Here, we report a hybrid approach for the development of high-performance, ultrathin and conformable electronic devices, based on the integration of semiconducting transition metal dichalcogenides, i.e., MoS2, with organic gate dielectric material, i.e., polyvinyl formal (PVF) combined with inkjet printed PEDOT:PSS electrodes. Through this novel approach, transistors and simple digital and analogue circuits are fabricated by a sequential stacking of ultrathin (nanometer) layers on a few micrometers thick polyimide substrate, which guarantees the high flexibility mandatory for the targeted applications.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.