Ultrathin Transistors and Circuits for Conformable Electronics.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-12-11 Epub Date: 2024-11-04 DOI:10.1021/acs.nanolett.4c04930
Federico Parenti, Riccardo Sargeni, Elisabetta Dimaggio, Francesco Pieri, Filippo Fabbri, Tommaso Losi, Fabrizio Antonio Viola, Arindam Bala, Zhenyu Wang, Andras Kis, Mario Caironi, Gianluca Fiori
{"title":"Ultrathin Transistors and Circuits for Conformable Electronics.","authors":"Federico Parenti, Riccardo Sargeni, Elisabetta Dimaggio, Francesco Pieri, Filippo Fabbri, Tommaso Losi, Fabrizio Antonio Viola, Arindam Bala, Zhenyu Wang, Andras Kis, Mario Caironi, Gianluca Fiori","doi":"10.1021/acs.nanolett.4c04930","DOIUrl":null,"url":null,"abstract":"<p><p>Adapting electronics to perfectly conform to nonplanar and rough surfaces, such as human skin, is a challenging task, which could open up new applications in fields of high economic and scientific interest, ranging from health to robotics, human-machine interface, and Internet of Things. The key to success lies in defining a technology that can lead to ultrathin devices, exploiting ultimately thin materials, with high mechanical flexibility and excellent electrical properties. Here, we report a hybrid approach for the development of high-performance, ultrathin and conformable electronic devices, based on the integration of semiconducting transition metal dichalcogenides, i.e., MoS<sub>2</sub>, with organic gate dielectric material, i.e., polyvinyl formal (PVF) combined with inkjet printed PEDOT:PSS electrodes. Through this novel approach, transistors and simple digital and analogue circuits are fabricated by a sequential stacking of ultrathin (nanometer) layers on a few micrometers thick polyimide substrate, which guarantees the high flexibility mandatory for the targeted applications.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"15870-15877"},"PeriodicalIF":9.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04930","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Adapting electronics to perfectly conform to nonplanar and rough surfaces, such as human skin, is a challenging task, which could open up new applications in fields of high economic and scientific interest, ranging from health to robotics, human-machine interface, and Internet of Things. The key to success lies in defining a technology that can lead to ultrathin devices, exploiting ultimately thin materials, with high mechanical flexibility and excellent electrical properties. Here, we report a hybrid approach for the development of high-performance, ultrathin and conformable electronic devices, based on the integration of semiconducting transition metal dichalcogenides, i.e., MoS2, with organic gate dielectric material, i.e., polyvinyl formal (PVF) combined with inkjet printed PEDOT:PSS electrodes. Through this novel approach, transistors and simple digital and analogue circuits are fabricated by a sequential stacking of ultrathin (nanometer) layers on a few micrometers thick polyimide substrate, which guarantees the high flexibility mandatory for the targeted applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超薄晶体管和可适配电子电路。
让电子器件完美贴合人体皮肤等非平面和粗糙表面是一项极具挑战性的任务,它可以在具有高度经济和科学意义的领域开辟新的应用,包括健康、机器人、人机界面和物联网等。成功的关键在于确定一种技术,这种技术可以利用终极薄材料制造出具有高机械灵活性和优异电气性能的超薄设备。在此,我们报告了一种用于开发高性能、超薄和适形电子器件的混合方法,该方法基于半导体过渡金属二掺杂物(即 MoS2)与有机栅介质材料(即聚乙烯正式(PVF))以及喷墨打印的 PEDOT:PSS 电极的集成。通过这种新方法,可以在几微米厚的聚酰亚胺基底上依次堆叠超薄(纳米)层,从而制造出晶体管以及简单的数字和模拟电路,保证了目标应用所需的高灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Quadrupolar Resonance Spectroscopy of Individual Nuclei Using a Room-Temperature Quantum Sensor Novel Thermoplastic Polyurethanes Enable Biaxially Stretchable Conductor for Supercapacitors with High Areal Capacitance Ultrafast Charge Transfer in Lithium-Ion and Water-Intercalated MoS2/WS2 Heterostructures Current-Driven to Thermally Driven Multistep Phase Transition of Charge Density Wave Order in 1T-TaS2 Specific Influences of Trap States with Distinct Spatial and Energetic Distributions on Ion Migration Dynamics in Metal Halide Perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1