Incorporating Hydrogel (with Low Polymeric Content) into 3D-Printed PLGA Scaffolds for Local and Sustained Release of BMP2 in Repairing Large Segmental Bone Defects.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2024-11-03 DOI:10.1002/adhm.202403613
Rongpeng Dong, Mingyang Kang, Yang Qu, Tingting Hou, Jianwu Zhao, Xueliang Cheng
{"title":"Incorporating Hydrogel (with Low Polymeric Content) into 3D-Printed PLGA Scaffolds for Local and Sustained Release of BMP2 in Repairing Large Segmental Bone Defects.","authors":"Rongpeng Dong, Mingyang Kang, Yang Qu, Tingting Hou, Jianwu Zhao, Xueliang Cheng","doi":"10.1002/adhm.202403613","DOIUrl":null,"url":null,"abstract":"<p><p>Treating large bone defects remains a considerable challenge for clinicians: bone repair requires scaffolds with mechanical properties and bioactivities. Herein, based on crosslinking o-phthalaldehyde (OPA) with amine groups, 4-arm polyethylene glycol (4armPEG)-OPA/Gelatin hydrogel loaded with bone morphogenetic protein 2 (BMP2) is prepared and a three dimensional (3D)-printed poly (lactic-co-glycolic acid) (PLGA) porous scaffold is filled with the hydrogel solution. The composite scaffold, with a compression modulus of 0.68 ± 0.097 GPa similar to the cancellous bone, has a porosity of 56.67 ± 4.72% and a pore size of about 380 µm, promoting bone growth. The hydrogel forms a porous network at low concentrations, aiding protein release and cell migration. The hydrogel degrades in approximately three weeks, and the scaffold takes five months, matching bone repair timelines. BMP2 release experiment shows a sustained BMP2 release with a 72.4 ± 0.53% release ratio. The ALP activity test and alizarin red staining shows effective osteogenic promotion, while RT-PCR confirms BMP2@Gel enhanced COL-1 and OPN expression. Animal experiments further validate the composite scaffold's bone repair efficacy. This study demonstrates the effectiveness of the hydrogel in releasing BMP2 and the mechanical support of the 3D-printed PLGA porous scaffold, providing a new treatment for bone defects.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403613"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403613","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Treating large bone defects remains a considerable challenge for clinicians: bone repair requires scaffolds with mechanical properties and bioactivities. Herein, based on crosslinking o-phthalaldehyde (OPA) with amine groups, 4-arm polyethylene glycol (4armPEG)-OPA/Gelatin hydrogel loaded with bone morphogenetic protein 2 (BMP2) is prepared and a three dimensional (3D)-printed poly (lactic-co-glycolic acid) (PLGA) porous scaffold is filled with the hydrogel solution. The composite scaffold, with a compression modulus of 0.68 ± 0.097 GPa similar to the cancellous bone, has a porosity of 56.67 ± 4.72% and a pore size of about 380 µm, promoting bone growth. The hydrogel forms a porous network at low concentrations, aiding protein release and cell migration. The hydrogel degrades in approximately three weeks, and the scaffold takes five months, matching bone repair timelines. BMP2 release experiment shows a sustained BMP2 release with a 72.4 ± 0.53% release ratio. The ALP activity test and alizarin red staining shows effective osteogenic promotion, while RT-PCR confirms BMP2@Gel enhanced COL-1 and OPN expression. Animal experiments further validate the composite scaffold's bone repair efficacy. This study demonstrates the effectiveness of the hydrogel in releasing BMP2 and the mechanical support of the 3D-printed PLGA porous scaffold, providing a new treatment for bone defects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在三维打印聚乳酸乙二胺支架中加入水凝胶(聚合物含量低),以局部持续释放 BMP2,修复大段骨缺损。
治疗大面积骨缺损仍然是临床医生面临的一项巨大挑战:骨修复需要具有机械性能和生物活性的支架。本文基于邻苯二甲醛(OPA)与胺基团的交联,制备了负载骨形态发生蛋白2(BMP2)的4-臂聚乙二醇(4armPEG)-OPA/明胶水凝胶,并用水凝胶溶液填充了三维(3D)打印聚(乳酸-共聚-乙醇酸)(PLGA)多孔支架。复合支架的压缩模量为 0.68 ± 0.097 GPa,与松质骨相似,孔隙率为 56.67 ± 4.72%,孔径约为 380 µm,可促进骨骼生长。水凝胶在低浓度时形成多孔网络,有助于蛋白质释放和细胞迁移。水凝胶大约在三周内降解,而支架需要五个月的时间,与骨修复时间相匹配。BMP2 释放实验表明,BMP2 可持续释放,释放率为 72.4 ± 0.53%。ALP 活性测试和茜素红染色显示,BMP2@Gel 能有效促进成骨;RT-PCR 证实,BMP2@Gel 能增强 COL-1 和 OPN 的表达。动物实验进一步验证了复合支架的骨修复功效。这项研究证明了水凝胶释放 BMP2 的有效性和三维打印 PLGA 多孔支架的机械支撑作用,为骨缺损提供了一种新的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Kirigami-Inspired Stretchable Piezoelectret Sensor for Analysis and Assessment of Parkinson's Tremor. Metabolically-Driven Active Targeting of Magnetic Nanoparticles Functionalized with Glucuronic Acid to Glioblastoma: Application to MRI-Tracked Magnetic Hyperthermia Therapy. Recent Progress and Opportunities of Wearable Non-Invasive Epidermal Sensors for Skin Disease Diagnosis. A 3D Pancreatic Cancer Model with Integrated Optical Sensors for Noninvasive Metabolism Monitoring and Drug Screening (Adv. Healthcare Mater. 29/2024) Antitumor Cream: Transdermal Hydrogel Containing Liposome-Encapsulated Ruthenium Complex for Infrared-Controlled Multimodal Synergistic Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1